3 research outputs found

    Plasma cell-free DNA methylation analysis for ovarian cancer detection: Analysis of samples from a case-control study and an ovarian cancer screening tria

    Get PDF
    Analysis of cell-free DNA methylation (cfDNAme), alone or combined with CA125, could help to detect ovarian cancers earlier and may reduce mortality. We assessed cfDNAme in regions of ZNF154, C2CD4D and WNT6 via targeted bisulfite sequencing in diagnostic and early detection (preceding diagnosis) settings. Diagnostic samples were obtained via prospective blood collection in cell-free DNA tubes in a convenience series of patients with a pelvic mass. Early detection samples were matched case-control samples derived from the UK Familial Ovarian Cancer Screening Study (UKFOCSS). In the diagnostic set (ncases  = 27, ncontrols  = 41), the specificity of cfDNAme was 97.6% (95% CI: 87.1%-99.9%). High-risk cancers were detected with a sensitivity of 80% (56.3%-94.3%). Combination of cfDNAme and CA125 resulted in a sensitivity of 94.4% (72.7%-99.9%) for high-risk cancers. Despite technical issues in the early detection set (ncases  = 29, ncontrols  = 29), the specificity of cfDNAme was 100% (88.1%-100.0%). We detected 27.3% (6.0%-61.0%) of high-risk cases with relatively lower genomic DNA (gDNA) contamination. The sensitivity rose to 33.3% (7.5%-70.1%) in samples taken <1 year before diagnosis. We detected ovarian cancer in several patients up to 1 year before diagnosis despite technical limitations associated with archival samples (UKFOCSS). Combined cfDNAme and CA125 assessment may improve ovarian cancer screening in high-risk populations, but future large-scale prospective studies will be required to validate current findings

    The WID-EC test for the detection and risk prediction of endometrial cancer

    Get PDF
    The incidence of endometrial cancer is rising. Measures to identify women at risk and to detect endometrial cancer earlier are required to reduce the morbidity triggered by the aggressive treatment required for advanced endometrial cancer. We developed the WID-EC (Women's cancer risk IDentification-Endometrial Cancer) test, which is based on DNA methylation at 500 CpG sites, in a discovery set of cervical liquid-based cytology samples from 1,086 women with and without an endometrial cancer (217 cancer cases and 869 healthy controls) with a worse prognosis (grade 3 or ≥stage IB). We validated the WID-EC test in an independent external validation set of 64 endometrial cancer cases and 225 controls. We further validated the test in 150 healthy women (prospective set) who provided a cervical sample as part of the routine Swedish cervical screening programme, 54 of whom developed endometrial cancer within three years of sample collection. The WID-EC test identified women with endometrial cancer with a receiver operator characteristic area under the curve (AUC) of 0.92 (95% CI: 0.88-0.97) in the external set and of 0.82 (95% CI: 0.74-0.89) in the prospective validation set. Using an optimal cutoff, cancer cases were detected with a sensitivity of 86% and a specificity of 90% in the external validation set, and a sensitivity and specificity of 52% and 98% respectively in the prospective validation set. The WID-EC test can identify women with or at risk of endometrial cancer
    corecore