186 research outputs found

    Modular Invariants for Lattice Polarized K3 Surfaces

    Full text link
    We study the class of complex algebraic K3 surfaces admitting an embedding of H+E8+E8 inside the Neron-Severi lattice. These special K3 surfaces are classified by a pair of modular invariants, in the same manner that elliptic curves over the field of complex numbers are classified by the J-invariant. Via the canonical Shioda-Inose structure we construct a geometric correspondence relating K3 surfaces of the above type with abelian surfaces realized as cartesian products of two elliptic curves. We then use this correspondence to determine explicit formulas for the modular invariants.Comment: 29 pages, LaTe

    Lattice Polarized K3 Surfaces and Siegel Modular Forms

    Full text link
    The goal of the present paper is two-fold. First, we present a classification of algebraic K3 surfaces polarized by the lattice H+E_8+E_7. Key ingredients for this classification are: a normal form for these lattice polarized K3 surfaces, a coarse moduli space and an explicit description of the inverse period map in terms of Siegel modular forms. Second, we give explicit formulas for a Hodge correspondence that relates these K3 surfaces to principally polarized abelian surfaces. The Hodge correspondence in question underlies a geometric two-isogeny of K3 surfaces

    Mirror symmetry, Tyurin degenerations and fibrations on Calabi-Yau manifolds

    Get PDF
    We investigate a potential relationship between mirror symmetry for Calabi-Yau manifolds and the mirror duality between quasi-Fano varieties and Landau-Ginzburg models. More precisely, we show that if a Calabi-Yau admits a so-called Tyurin degeneration to a union of two Fano varieties, then one should be able to construct a mirror to that Calabi-Yau by gluing together the Landau-Ginzburg models of those two Fano varieties. We provide evidence for this correspondence in a number of different settings, including Batyrev-Borisov mirror symmetry for K3 surfaces and Calabi-Yau threefolds, Dolgachev-Nikulin mirror symmetry for K3 surfaces, and an explicit family of threefolds that are not realized as complete intersections in toric varieties.Comment: v2: Section 5 has been completely rewritten to accommodate results removed from Section 5 of arxiv:1501.04019. v3: Final version, to appear in String-Math 2015, forthcoming volume in the Proceedings of Symposia in Pure Mathematics serie

    Special function identities from superelliptic Kummer varieties

    Full text link
    We prove that the factorization of Appell's generalized hypergeometric series satisfying the so-called quadric property into a product of two Gauss' hypergeometric functions has a geometric origin: we first construct a generalized Kummer variety as minimal nonsingular model for a product-quotient surface with only rational double points from a pair of superelliptic curves of genus 2r−12r-1 with r∈Nr \in \mathbb{N}. We then show that this generalized Kummer variety is equipped with two fibrations with fibers of genus 2r−12r-1. When periods of a holomorphic two-form over carefully crafted transcendental two-cycles on the generalized Kummer variety are evaluated using either of the two fibrations, the answer must be independent of the fibration and the aforementioned family of special function identities is obtained. This family of identities can be seen as a multivariate generalization of Clausen's Formula. Interestingly, this paper's finding bridges Ernst Kummer's two independent lines of research, algebraic transformations for the Gauss' hypergeometric function and nodal surfaces of degree four in P3\mathbb{P}^3.Comment: 46 pages, 2 figure
    • …
    corecore