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MIRROR SYMMETRY, TYURIN DEGENERATIONS AND

FIBRATIONS ON CALABI-YAU MANIFOLDS

CHARLES F. DORAN, ANDREW HARDER, AND ALAN THOMPSON

Abstract. We investigate a potential relationship between mirror symmetry
for Calabi-Yau manifolds and the mirror duality between quasi-Fano varieties
and Landau-Ginzburg models. More precisely, we show that if a Calabi-Yau
admits a so-called Tyurin degeneration to a union of two Fano varieties, then
one should be able to construct a mirror to that Calabi-Yau by gluing to-
gether the Landau-Ginzburg models of those two Fano varieties. We provide

evidence for this correspondence in a number of different settings, including
Batyrev-Borisov mirror symmetry for K3 surfaces and Calabi-Yau threefolds,
Dolgachev-Nikulin mirror symmetry for K3 surfaces, and an explicit family of
threefolds that are not realized as complete intersections in toric varieties.

1. Introduction

The aim of this paper is to investigate the relationship between mirror symmetry
for Calabi-Yau manifolds and for Fano varieties of the same dimension.

Classically, mirror symmetry is a network of conjectures relating the properties
of two mirror dual Calabi-Yau manifolds. For us, unless otherwise stated, a Calabi-
Yau manifold will always be a smooth compact Kähler manifold V with trivial
canonical bundle ωV

∼= OV and vanishing cohomology groups Hi(V,OV ) for all
0 < i < dim(V ).

A similar duality has been proposed for Fano varieties. In physics, Eguchi, Hori
and Xiong [EHX97] postulated that a d-dimensional manifold X with c1(X) > 0
should be mirror to a Landau-Ginzburg model (Y,w), where Y is a d-dimensional
Kähler manifold and w is a function w : Y → C. This correspondence was then
incorporated into the framework of homological mirror symmetry, as a correspon-
dence between the directed Fukaya category [Sei01b] (resp. the bounded derived
category of singularities [Orl09]) associated to (Y,w) and the bounded derived cat-
egory of coherent sheaves on X (resp. the Fukaya category of X). More recently,
Katzarkov, Kontsevich and Pantev [KKP14] conjectured that if X is a Fano variety,
then the Landau-Ginzburg model (Y,w) of X is in fact a quasi-projective variety
that satisfies certain specific conditions and, moreover, that there is a mirror rela-
tionship between the Hodge numbers of X and certain Hodge-theoretic invariants
of (Y,w).
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It is expected that this notion of mirror symmetry for Fano varieties is related
to classical mirror symmetry for Calabi-Yau manifolds of one dimension lower, as
follows. If X is a d-dimensional Fano variety with mirror Landau-Ginzburg model
(Y,w), then a general fibre of w is expected to be a (d− 1)-dimensional Calabi-Yau
variety that is mirror, in the classical sense, to a generic anticanonical hypersurface
in X .

This raises a natural question: is mirror symmetry for d-dimensional Fano va-
rieties related to classical mirror symmetry for Calabi-Yau manifolds of the same
dimension d? In this paper we outline a correspondence that provides a potential
answer to this question.

This correspondence may be described as follows. Let V be a d-dimensional
Calabi-Yau manifold and suppose that V admits a degeneration to a union X1 ∪Z

X2 of two quasi-Fano varieties glued along an anticanonical hypersurface Z (such
degenerations are called Tyurin degenerations). Then we claim that the mirror W
of V admits a fibration by (d− 1)-dimensional Calabi-Yau manifolds, with general
fibre S that is mirror to Z. Moreover, W can be constructed topologically by
gluing together the Landau-Ginzburg models (Y1,w1) and (Y2,w2) of X1 and X2,
in a sense to be made precise in Section 2.2.

The first person to observe traces of such a correspondence was probably Dol-
gachev [Dol96], who noticed that Dolgachev-Nikulin mirror symmetry for K3 sur-
faces matches Type II degenerations (of which Tyurin degenerations are a special
case) with elliptic fibrations on the mirror. After this, the first mention of a higher
dimensional version appears to be due to Tyurin, who gave a brief hint of its exis-
tence at the very end of [Tyu04].

More recently, a variant of the construction presented here was worked out in
detail by Auroux [Aur08], in the special case where V is a double cover of a Fano
variety X ramified over a smooth member of | − 2KX |; this V admits a Tyurin
degeneration to the union of X with itself.

The structure of this paper is as follows. In Section 2 we describe our con-
struction. We begin with a d-dimensional Calabi-Yau manifold V which admits a
Tyurin degeneration to a union X1 ∪Z X2 of quasi-Fano varieties glued along an
anticanonical hypersurface Z. Then we show that the Landau-Ginzburg models
(Y1,w1) and (Y2,w2) of X1 and X2 may be glued together to form a new variety
W , which is fibred by Calabi-Yau (d − 1)-folds topologically mirror to Z, so that
the Euler numbers of V and W satisfy the mirror relationship χ(V ) = (−1)dχ(W ).
This suggests that V and W should be thought of as mirror dual. In the threefold
case we provide even more evidence for this conjecture: if we make the assumptions
that W is Calabi-Yau and that the K3 surface Z is Dolgachev-Nikulin mirror to a
general fibre of the fibration on W , then we can show that V and W are in fact
topologically mirror.

In the remaining sections of the paper we discuss this correspondence in several
special cases. In Section 3 we discuss the case of Batyrev-Borisov mirror symmetry
for surfaces and threefolds. Indeed, suppose that V is a K3 surface or Calabi-Yau
threefold constructed as an anticanonical hypersurface in a Gorenstein toric Fano
3- or 4-fold, determined by a reflexive polytope ∆. We show that a nef partition
∆1, ∆2 of ∆ determines both a Tyurin degeneration X1∪Z X2 of V and a fibration
π : W → P1 on a birational model W of its Batyrev mirror, so that the general fibre
of π is Batyrev-Borisov mirror dual to the intersection Z = X1 ∩X2.
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Specializing to the threefold case, we further show that the singular fibres of
the K3 surface fibration π : W → P1 contain numerical information about X1 and
X2, and describe a relationship between W and the Landau-Ginzburg models of
X1 and X2. Unfortunately a corresponding result in the K3 surface case is difficult
to prove for combinatorial reasons, but we conjecture the form that such a result
should take.

Section 4 is concerned with Dolgachev-Nikulin mirror symmetry for K3 surfaces.
We revisit Dolgachev’s [Dol96] mirror correspondence between Type II degenera-
tions (of which Tyurin degenerations are a special case) and elliptic fibrations, which
may be thought of as a generalization of the correspondence described in Section
2. Consideration of several explicit examples suggests a way to enhance our con-
jectures to cope with more general Type II degenerations, which may contain more
than two components.

In Section 5 we discuss how this theory fits with classical mirror symmetry for
threefolds. We begin by showing that, if V is a Calabi-Yau threefold that under-
goes a Tyurin degeneration (satisfying certain technical conditions), then mirror
symmetry predicts the existence of a K3 fibration on the mirror threefold W , with
properties consistent with those expected from the theory in Section 2. Following
this, we specialize our discussion to the case of threefolds fibred by quartic mirror
K3 surfaces, as studied in [DHNT16]. In this setting we explicitly construct can-
didate mirror threefolds, along with Tyurin degenerations of them, and show that
they have the properties predicted by Section 2. In particular, this provides an
important illustration of our theory using threefolds that are not complete inter-
sections in toric varieties, thereby giving evidence that the ideas of Section 2 apply
beyond the toric setting of Section 3.

Finally, Section 6 discusses the limitations of our construction. Indeed, it appears
that difficulties arise for Tyurin degenerations of V which occur along loci in moduli
that are disjoint from points of maximally unipotent monodromy. In this case, we
seem to have no guarantee of the existence of a mirror fibration on W ; an example
where this occurs is given in Example 6.1. Instead we present evidence that, if W is
replaced by its bounded derived category of coherent sheaves D

b(W ), it should be
possible to find a non-commutative fibration of Db(W ) by Calabi-Yau categories,
which might be thought of as homologically mirror to the Tyurin degeneration of
V .

2. Setup and preliminary results

Our aim is to provide evidence for a mirror correspondence between a certain
type of degeneration of Calabi-Yau manifolds, called a Tyurin degeneration, and
Calabi-Yau manifolds constructed by gluing Landau-Ginzburg models. We begin
by defining these objects.

2.1. Smoothing Tyurin degenerations. A smooth variety X is called a quasi-
Fano variety if its anticanonical linear system contains a smooth Calabi-Yau mem-
ber and Hi(X,OX) = 0 for all i > 0. Given this, a Tyurin degeneration is a
degeneration V → ∆ of Calabi-Yau manifolds over the unit disc ∆ ⊂ C, such that
the total space V is smooth and the central fibre is a union of two quasi-Fano va-
rieties that meet normally along a smooth variety Z, with Z ∈ | − KXi

| for each
i ∈ {1, 2}. Degenerations of this type have been studied by Lee [Lee06], who coined
the name.
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This construction can be reversed, and a family of Calabi-Yau manifolds built up
from a pair of quasi-Fano varieties X1 and X2 as follows. Let Z be a smooth variety
which is a member of both |−KX1

| and |−KX2
|, and suppose that there are ample

classes D1 ∈ Pic(X1) and D2 ∈ Pic(X2) which both restrict to the same ample
class D ∈ Pic(Z) (this last condition is needed to ensure that [KN94, Theorem
4.2], which gives the existence of a smoothing, can be applied in our setting). Let
X1∪ZX2 denote the variety which is a normal crossings union ofX1 andX2 meeting
along Z.

With this setup, we say that X1 ∪Z X2 is smoothable to a Calabi-Yau manifold
V if there exists a complex manifold V equipped with a map ψ : V → ∆ so that
the fibre ψ−1(0) = X1 ∪Z X2, the fibre ψ−1(t) is a smooth Calabi-Yau manifold
for any t ∈ ∆ \ {0}, and V is a general fibre of V . It follows from a theorem of
Kawamata and Namikawa [KN94, Theorem 4.2] that X1 ∪Z X2 is smoothable to a
Calabi-Yau manifold V if and only if NZ/X1

and NZ/X2
are inverses of one another

and, moreover, that the resulting manifold V is unique up to deformation.

2.2. Gluing Landau-Ginzburg models. Let us first define what we mean by
Landau-Ginzburg (LG) model in this paper. In [Har16], a notion of a LG model is
defined which conjecturally encapsulates the LG models of Fano varieties, and even
goes further to describe the LG models of many quasi-Fano varieties. For general
quasi-Fano varieties, however, we do not believe that this definition is sufficient;
in particular, it seems that for general quasi-Fanos we must drop any expectation
that our LG model be algebraic.

For this reason, in this paper we adopt a much more general definition.

Definition 2.1. A Landau-Ginzburg (LG) model of a quasi-Fano variety is a pair
(Y,w) consisting of a a Kähler manifold Y satisfying h1(Y ) = 0 and a proper map
w : Y → C. The map w is called the superpotential.

Note that this definition leaves room for the image of w to be an open set in
C. If Y is quasi-projective then the Hodge numbers of such LG models (Y,w) are
defined in [KKP14]; however, in the general case it is unclear how this should be
done. Instead, following [KKP14], we propose that if (Y,w) is the LG model of a
quasi-Fano variety X , then we should have

(1) hi(Y,w−1(t)) =
∑

j

hd−i+j,j(X),

where hi(Y,w−1(t)) is the rank of the cohomology group of the pair Hi(Y,w−1(t))
and t is a generic point in the image of w. We also expect that if (Y,w) is the LG
model of X , then the smooth fibres of w should be mirror to generic anticanonical
hypersurfaces in X .

With notation as in the previous section, it now seems pertinent to ask whether
there is any relationship between the LG models of the quasi-Fano varieties X1 and
X2, and mirror symmetry for V . Indeed, it seems natural to expect that these LG
models could be somehow glued together to give a mirror W for V , since we are, in
a topological sense, gluing X1 and X2 together to form V (see [Tyu04] for details
on this topological construction).

In more detail, we expect that if Yi is the LG model of Xi, equipped with super-
potential wi, then the monodromy symplectomorphism on w

−1
i (t) (for t a regular

value of wi) associated to a small loop around ∞ can be identified under mirror
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Y1

Y2

w1

w2

Y1|B1

Y2|B2

w1|B1

w2|B2

⊃

⊃

≃ diffeo

Identify B1 and B2

W

π

Figure 1. Gluing Y1 and Y2 to give W

symmetry with the restriction of the Serre functor of the bounded derived category
of coherent sheaves D

b(Xi) on Xi to the bounded derived category of coherent
sheaves D

b(Z) on Z [Sei01a, KKP14]. This Serre functor is simply (−) ⊗ ωXi
[d]

where [d] denotes shift by d = dimXi. Thus, up to a choice of shift, we see that
the action of monodromy on w

−1
i (t) should be identified with the autoequivalence

of Db(Z) induced by taking the tensor product with ωXi
|Z = N−1

Z/Xi
.

Now recall that if X1∪ZX2 is smoothable to V , then we have NZ/X1
⊗NZ/X2

=
OZ , so the monodromy symplectomorphism φ1 associated to a clockwise loop
around infinity on w

−1
1 (t) should be same as the monodromy φ−1

2 associated to

a counter-clockwise loop around infinity on w
−1
2 (t). It should be noted that, for

this to make sense, we must assume that the fibres of w1 and w2 are topologically
the same Calabi-Yau manifold, which we denote by S; this assumption is stronger
than the assumption that both are mirror to Z.

Now we glue these LG models as follows. For each i ∈ {1, 2}, choose ri so that
|λ| ≤ ri for every λ in the critical locus of wi. Then choose local trivializations of
Yi over Ui = {z ∈ C : |z| > ri} and let Qi = w

−1
i (Ui). This local trivialization

is topologically equivalent to expressing Qi as a gluing of the ends of Bi = S ×
[−1, 1]× (−1, 1) together via the map

φ̃i : p× {−1} × (z) 7−→ φi(p)× {1} × (z),

where φi is the monodromy symplectomorphism, and we identify S×{−1}×(−1, 1)
with S × {1} × (−1, 1).

Assuming that φ1 = φ−1
2 (which, we recall, conjecturally follows from smootha-

bility of X1 ∪Z X2), we can identify B1 with B2 by the map

τ : p× [x]× (z) 7−→ p× [−x]× (−z).
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Under this identification of B1 and B2, it is clear that τ · φ̃1 = φ̃2. Thus the
identification τ gives an isomorphism between Q1 and Q2, allowing us to glue Y1
to Y2 along Q1 and Q2 to produce a C∞ manifold W . This gluing respects the
fibrations w1 and w2, so W is equipped with a fibration π over the gluing of C with
C described above. It is clear that the base of this fibration is just the 2-sphere S2.
This procedure is illustrated in Figure 1.

Example 2.2. As a sanity check, we can perform this construction with elliptic
curves. Take a degeneration of an elliptic curve to a union of two copies of P1

meeting in two points (Kodaira type I2). The LG model of P1 is the map from C×,
which is topologically a twice-punctured rational curve, to C given by

w : x 7−→ x+
1

x
.

This map w is a double covering of A1 ramified at two points. One can check that
monodromy of this fibration around the point at infinity is trivial. Let Y1 and Y2
be copies of this LG model of P1. Then we may glue Y1 and Y2 as described above.
The resulting topological space is a double cover of S2 which is ramified at four
points. This is simply the 2-dimensional torus, which is topologically mirror to the
original elliptic curve

Theorem 2.3. Let X1 and X2 be d-dimensional quasi-Fano varieties which contain
the same anticanonical Calabi-Yau hypersurface Z, such that KX1

|Z +KX2
|Z = 0.

Let (Y1,w1) and (Y2,w2) be Landau-Ginzburg models of X1 and X2, and suppose
that the fibres of w1 and w2 are topologically the same Calabi-Yau manifold, which
is topologically mirror to Z. Finally, let V be a Calabi-Yau variety obtained from
X1 ∪Z X2 by smoothing and let W be the variety obtained by gluing Y1 to Y2 as
above. Then

χ(V ) = (−1)dχ(W ),

where χ denotes the Euler number.

Proof. Start by recalling the long exact sequence of the pair (Yi,w
−1
i (t)), for t a

regular value of wi,

· · · → Hn(Yi,C) → Hn(w−1
i (t),C) → Hn+1(Yi,w

−1
i (t);C) → Hn+1(Yi,C) → · · · .

Since Euler numbers are additive in long exact sequences, we have that χ(Yi) =
χ(Yi,w

−1
i (t)) + χ(w−1

i (t)). By Equation (1), we see that χ(Yi,w
−1(t)) is equal to

(−1)dχ(Xi), where d is the dimension of Yi. Thus χ(Yi) = (−1)dχ(Xi)+χ(w
−1
i (t))).

Moreover, since w
−1(t) is topologically mirror to Z by assumption, we have that

χ(Z) = (−1)d−1χ(w−1(t)), which gives χ(Yi) = (−1)d(χ(Xi)− χ(Z)).
On the other hand, the Mayer-Vietoris exact sequence

· · · → Hn(W,C) → Hn(Y1,C)⊕Hn(Y2,C) → Hn(Y1 ∩ Y2,C) → · · ·

gives χ(W ) = χ(Y1) + χ(Y2) − χ(Y1 ∩ Y2). Since Y1 ∩ Y2 is a fibration over an
annulus, we can compute its cohomology using the Wang sequence [PS08, Theorem
11.33]

· · · → Hn(Y1 ∩ Y2,C) → Hn(w−1(t),C)
Tn−Id
−−−−→ Hn(w−1(t),C) → · · · ,

where Tn is the action of monodromy on Hn(w−1(t),C) associated to a small loop
around our annulus, to obtain χ(Y1 ∩ Y2) = 0. Putting everything together, we
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obtain

χ(W ) = (−1)d(χ(X1) + χ(X2)− 2χ(Z)).

Finally, since X1 ∪Z X2 is smoothable to V , we can compute the Euler charac-
teristic of V by applying [Lee06, Proposition IV.6], which states that

χ(V ) = χ(X1) + χ(X2)− 2χ(Z).

We therefore have that χ(W ) = (−1)dχ(V ), as claimed. �

This is precisely the relationship between the Euler characteristics of mirror dual
Calabi-Yau varieties. In the next subsection, we will provide more evidence for the
hypothesis that W is the mirror dual of the original Calabi-Yau variety V , in the
special case where V is a Calabi-Yau threefold.

Remark 2.4. Note that the requirement that there exist two ample divisors D1 and
D2, on X1 and X2 respectively, which restrict to the same divisor on Z was not
used at all in the proof of Theorem 2.3. Moreover, despite the fact that the proof of
[KN94, Theorem 4.2] uses this assumption in a material way (in order to prove the
pro-representability of the log deformation functor), the topological construction of
the gluing of X1 and X2 can be performed without it.

For instance, let us take a generic K3 surface Z with Picard lattice of rank 2
isomorphic to the lattice with Gram matrix

(
4 6
6 6

)
.

Such a K3 surface embeds into both P3 and the intersection of a quadric Q and
a cubic C in P5. Let us blow up P3 in Z ∩ Z ′ for some generic K3 surface Z ′ in
P3, calling the result X1, and blow up Q∩C in the intersection of Z and a generic
hyperplane section in P5, calling the result X2. Then the normal crossings variety
X1 ∪Z X2 is not Kähler, so we cannot find D1 and D2 as above. However, both V
and W can be constructed, as C∞ manifolds, from X1 ∪Z X2 by the method we
have described. We wonder whether V and W represent a mirror pair of non-Kähler
Calabi-Yau manifolds.

2.3. The threefold case. With notation as before, Lee [Lee10] has computed the
Hodge numbers of V in the case where X1 and X2 are smooth threefolds. Let
us define ρi : H

2(Xi,Q) → H2(Z,Q) for i = 1, 2 to be the restriction and define
k = rank(im(ρ1) + im(ρ2)).

Theorem 2.5. [Lee10, Corollary 8.2] Let V be a Calabi-Yau threefold constructed
as as smoothing of X1 ∪Z X2, as above. Then

h1,1(V ) = h2(X1) + h2(X2)− k − 1,

h2,1(V ) = 21 + h2,1(X1) + h2,1(X2)− k.

On the other side of the picture, we have a corresponding result for W .

Proposition 2.6. Let W be as above and let S be a general fibre of the map π.
Assume that dimW = dimS + 1 = 3. Then

h2(W ) = 1 + h2(Y1, S) + h2(Y2, S) + ℓ,

where ℓ is the rank of the subgroup of H2(S,C) spanned by the intersection of the
images of H2(Y1,C) and H2(Y2,C) under the natural restriction maps.
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Proof. Let U be the annulus along which B1 and B2 are glued, and let Q = π−1(U)
be its preimage in W . We begin by computing the rank of H2(W,C) using the
Mayer-Vietoris sequence

· · · → H1(Q,C) → H2(W,C) → H2(Y1,C)⊕H2(Y2,C)
rQ
1
−rQ

2−−−−−→ H2(Q,C) → · · · ,

where rQi are the natural restriction maps from H2(Yi,C) to H2(Q,C). From
the Wang sequence, we obtain H1(Q,C) = C. So, using the assumption that
H1(Y1,C) = H1(Y2,C) = 0, we see that H2(W,C) is isomorphic to the direct

product of C and the kernel of the restriction map rQ1 − rQ2 . We note that this map
fits into a commutative triangle

H2(Y1,C)⊕H2(Y2,C)

rS
1
−rS

2 ))❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

rQ
1
−rQ

2
// H2(Q,C)

rSQ
��

H2(S,C).

Now, since S is a K3 surface, we have h1(S) = 0, and it follows from the Wang
sequence that the map rSQ is injective. Thus the kernel of rS1 − rS2 is the same as

the kernel of rQ1 − rQ2 . Elementary linear algebra gives that the rank of this kernel
is h2(Y1) + h2(Y2)− rank(im(rS1 ) + im(rS2 )). So we obtain

h2(W ) = 1 + h2(Y1) + h2(Y2)− rank(im(rS1 ) + im(rS2 )).

Now, for i = 1, 2 we have exact sequences

0 −→ H2(Yi, S;C) −→ H2(Yi,C)
rSi−→ H2(S,C) −→ · · · .

Which give

h2(Yi) = h2(Yi, S) + rank(im(rSi )).

Putting together with the previous expression, the proposition follows. �

Therefore, if W admits a complex structure for which it is Calabi-Yau, then we
compute

χ(W ) = 2h1,1(W )− 2h2,1(W )

= 2(1 + h2(Y1, S) + h2(Y2, S) + ℓ)− 2h2,1(W ).

Equation (1) then gives that h2(Yi, S) = h2,1(Xi), so

χ(W ) = 2(h2,1(X1) + h2,1(X2)− h2,1(W ) + ℓ+ 1).

Furthermore, from Theorems 2.3 and 2.5, we also know that

χ(W ) = −χ(V )

= −2h1,1(V ) + 2h2,1(V )

= −2(h2(X1) + h2(X2)− k − 1) + 2(h2,1(X1) + h2,1(X2) + 21− k)

= 2(h2,1(X1) + h2,1(X2)− h2(X1)− h2(X2) + 22)

Putting this together, we have that h2,1(W ) = ℓ− 21 + h2(X1) + h2(X2). So in
order for W and V to be topologically mirror to one another, we must have

ℓ− 21 + h2(X1) + h2(X2) = h2(X1) + h2(X2)− k − 1,
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which is equivalent to ℓ + k = 20. This is true if S and Z are mirror dual in the
sense of Dolgachev-Nikulin, given the lattice polarization on Z (resp. S) coming
from the sum of the images of the restriction maps H2(Xi,Z) → H2(Z,Z) (resp.
the intersection of the images of the restriction maps H2(Yi,Z) → H2(S,Z)). Thus
mirror symmetry for V and W is consistent with mirror symmetry for S and Z.

Remark 2.7. In the case whereW is Calabi-Yau and S and Z are Dolgachev-Nikulin
mirror dual, the expressions

h2,1(V ) = 21 + h2,1(X1) + h2,1(X2)− k

h1,1(W ) = 1 + h2(Y1, S) + h2(Y2, S) + ℓ

could be thought of as mirror dual decompositions of the corresponding Hodge
numbers, in the following sense.

The Hodge number h2,1(Xi) may be interpreted as the fibre dimension of the
natural map from the moduli space of pairs (Xi, Z) to the moduli space of appro-
priately polarized K3 surfaces Z (which has dimension 20−k). Thus the degenerate
fibre X1∪ZX2 should have h2,1(X1)+h

2,1(X2)+20−k = h2,1(V )−1 deformations,
and such Tyurin degenerations should appear in codimension 1 in the moduli space
of V .

We thus obtain a decomposition of h2,1(V ) into contributions h2,1(Xi) coming
from deformations of each Xi, a contribution (20 − k) from deformations of the
gluing locus Z, and 1 for the codimension in the moduli space.

On the mirror side a similar statement holds: h1,1(W ) can be decomposed into
contributions h2(Yi, S) coming from the LG-models (Yi,wi) (these will be inter-
preted later as counts of components in singular fibres), a contribution ℓ from divi-
sors on the generic fibre S, and 1 for the class of a general fibre (compare [DHNT16,
Lemma 3.2]). The picture is completed by noting that h2(Yi, S) = h2,1(Xi) and
ℓ = 20− k.

3. Batyrev-Borisov mirror symmetry

In this section we will prove a number of results that illustrate the situation
considered in the previous section in the special case of Batyrev-Borisov mirror
symmetry. For background on the definitions and concepts used in this section,
we refer the reader to [CK99, CLS11]. However, since our conventions differ very
slightly from those used in the references above, before we proceed we will briefly
outline the notation to be used in the remainder of this section.

LetM be a free Z-module of rank d, let ∆ be a reflexive polytope inM⊗R =MR,
and denote the boundary of ∆ by ∂∆. Let N = Hom(M,Z) be the dual lattice to
M and denote by 〈·, ·〉 the natural bilinear pairing from N ×M to Z. Let

∆◦ = {u ∈ NR : 〈u, v〉 ≥ −1 for all v ∈ ∆}

denote the polar polytope to ∆.
Let P∆ be the d-dimensional toric variety associated to the polytope ∆. The

toric variety P∆ is Fano and has at worst Gorenstein singularities. Following [Bat94,
Theorem 2.2.24], one can find a toric variety X∆ which is a toric partial resolution
of singularities of P∆ and which has at worst Gorenstein terminal singularities.
Such X∆ is referred to as a maximal projective crepant partial (mpcp) resolution
of singularities of P∆. In the future, we shall fix one such X∆ for any given
P∆. The variety X∆ can be presented as a quotient of some Zariski open subset
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U ⊆ C|∂∆∩M| by the torus (C×)|∂∆|−d. There is thus a homogeneous coordinate
ring C[{zρ}ρ∈∂∆∩M ] on X∆.

The vanishing of each coordinate zρ determines a divisor on X∆, invariant under
the natural action of the torus (C×)d, which we call Dρ. The anticanonical divisor
−KX∆

of X∆ is linearly equivalent to
∑

ρ∈∂∆∩M Dρ, and the cycle class group

A1(X∆) is generated by the divisors Dρ. A divisor
∑

ρ∈∂∆∩M bρDρ for bρ ∈ Z is
Cartier if and only if there is a piecewise linear function ϕ on MR, which takes
integral values on M and which is linear on the cones of the fan defining X∆, so
that ϕ(ρ) = bρ for all ρ.

A nef partition of ∆ is a partition of ∂∆ ∩M into sets E1, . . . , Ek, so that for
each i = 1, . . . , k, the divisor

∑
ρ∈Ei

Dρ is nef and Cartier. Let us denote the line

bundle thus associated to Ei by Li. We will let ∆i = Conv(Ei ∪ {0M}); in a mild
abuse of terminology, we also refer to ∆1, . . . ,∆k as a nef partition of ∆.

Batyrev’s [Bat94] toric version of mirror symmetry claims that the generic anti-
canonical hypersurfaces in X∆ and X∆◦ are mirror dual. Moreover, if we have a nef
partition of ∆, then the complete intersection V of generic sections of L1, . . . ,Lk is
again Calabi-Yau. Borisov [Bor93] and Batyrev-Borisov [BB96] propose that there
is a similar combinatorial construction of the mirror of V . In this case, we define

∇i =

{
u ∈ NR :

〈u, v〉 ≥ 0 for all v ∈ Ej , j 6= i
〈u, v〉 ≥ −1 for all v ∈ Ei

}

and let ∇ = Conv(∇1 ∪ · · · ∪ ∇k). This is a reflexive polytope and ∇1, . . . ,∇k

is a nef partition of ∇. The complete intersection W in X∇ cut out by generic
sections of the line bundles associated to ∇1, . . . ,∇k is a Calabi-Yau variety, which
is expected to be mirror dual to V .

Finally, a refinement of a nef partition E1, . . . , Ek is defined to be another nef
partition F1, . . . , Fk+1 so that Fi = Ei for 1 ≤ i ≤ k − 1 and Ek = Fk ∪ Fk+1.

Now, let X∆ be a d-dimensional toric variety as above. Suppose that V is
a Calabi-Yau complete intersection of nef divisors in X∆, determined by a nef
partition E1, . . . , Ek. Our aim is to show that, if F1, . . . , Fk+1 is a refinement of
E1, . . . , Ek, then this combinatorial data determines

• a Tyurin degeneration of V , and
• a pencil of quasi-smooth varieties birational to Calabi-Yau (d− k− 1)-folds

inside of the Batyrev-Borisov mirror W .

In the case where V is a threefold, we show that this pencil induces a K3 surface
fibration on some birational model of W and that the singular fibres of this fibration
carry information about the Tyurin degeneration of V . We will then compare this
with the LG model picture in the previous section.

3.1. Tyurin degenerations. More precisely, let Li be the line bundles on X∆

associated to the Ei. The refinement F1, . . . , Fk+1 gives rise to a pair of nef line
bundles L′

k and L′
k+1 so that L′

k ⊗ L′
k+1 = Lk. Let si ∈ H0(X∆,Li) be generic

sections determining a quasi-smooth Calabi-Yau complete intersection V in X∆. If
we let s′k and s′k+1 be sections of L′

k and L′
k+1 respectively, then s′ks

′
k+1 is a section

of Lk.
We can use this to construct a pencil of complete intersections as follows. First,

let

V ′ = ∩k−1
i=1 {si = 0}
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and assume that V ′ is connected and quasi-smooth; it is also clear that V ′ is quasi-
Fano. Then take the pencil

Q : {tsk − s′ks
′
k+1 = 0} ∩ V ′

in A1×X∆, with t a parameter on A1. If we assume that X∆ is a smooth resolution
of P∆, then the only singularities of Q in a neighbourhood of 0 ∈ A1 are along
t = sk = s′k = s′k+1 = 0, which we call Σ.

Note that since Σ is the intersection of a set of nef divisors in X∆, it has no base
locus and its singularities are contained in the singular set of X∆. Furthermore,
the intersection of Σ with any torus invariant subvariety of X∆ is irreducible, thus
Σ itself is either irreducible or a union of non-intersecting subvarieties of X∆. As a
result, if X∆ is smooth, then so is Σ, for general enough choices of sections.

We can thus resolve the singularities of Q by blowing up t = s′k = 0 inside of
A1×X∆ and taking the proper transform of Q. The result is a Tyurin degeneration
of V , so that the fibre over 0 of the degeneration is equal to the union of X̂1 and
X2, where X̂1 is a quasi-Fano variety given by blowing up X1 := V ′ ∩ {s′k = 0}
along V ′ ∩ {sk = s′k = s′k+1 = 0} and X2 is a quasi-Fano variety given by X2 :=
V ′ ∩ {s′k+1 = 0}.

In the general situation, where X∆ is not a smooth resolution of P∆, we can
still perform all of the steps above, but we will have singularities occurring at every
step in general. The resulting degeneration will not be a Tyurin degeneration in the
strict sense, but should still include data corresponding to the quasi-Fano varieties
X1, X2 and the blown up locus Σ. We note here that a version of the smoothability
result of Kawamata and Namikawa that works for mildly singular varieties has been
explored in the thesis of Lee [Lee06]. The singular case may also be interpreted as
equipping the union of X1 and X2 with a log structure (see e.g. [ACG+13] and
the references therein), which accounts for the subvariety Σ and determines the
smoothing to V .

3.2. Pencils and fibrations on the mirror. Now we will look at how this nef
partition is reflected in the mirror. For ease of notation we restrict ourselves to the
case where V is a hypersurface; all of the results below generalize in the obvious way
to refinements of k-partite nef partitions corresponding to codimension k complete
intersections.

Since V is a hypersurface, the nef partition E1 = ∆ is trivial. Let ∆1,∆2

denote the polytopes corresponding to the refinement F1, F2 of E1; we thus have
∆ = Conv(∆1 ∪∆2).

Now, the Batyrev dual of V is a Calabi-Yau variety W embedded as an anti-
canonical hypersurface in X∆◦ . By definition, W is cut out by an equation in the
homogeneous coordinate ring of X∆◦ , which may be written as

f :=
∑

ρ∈∆∩M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ = 0,

where aρ are generically chosen complex coefficients. We will take a pencil P
of hypersurfaces in W , for [s : t] ∈ P1, defined by the intersection of W with
hypersurfaces of the form

s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ = ta0

∏

σ∈∂∆◦∩N

zσ.
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Note that, away from [s : t] = [0 : 1], this pencil may also be defined by the pair of
equations

s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ = ta0

∏

σ∈∂∆◦∩N

zσ

s
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ = (s− t)a0

∏

σ∈∂∆◦∩N

zσ.

as the sum of these two equations is just sf , which vanishes precisely along W if
s 6= 0.

We wish to show that the pencil P induces a fibration on W . If we can show
that a general member of this pencil is Calabi-Yau, then this will follow from:

Proposition 3.1. If S ⊆W is a smooth Calabi-Yau (d−1)-fold in a d-dimensional
Calabi-Yau manifold, then the linear system |S| is base-point free and hence there
is a map π : W → P1 with S as a fibre.

Proof. By adjunction, OS(S) = NS/W = ωS = OS . Let ι : S →֒W be the inclusion
map, then we have a short exact sequence of sheaves

0 −→ OW
s

−→ OW (S) −→ ι∗OS −→ 0,

where s is a section of OW (S) whose vanishing locus is S. This short exact sequence
gives rise to a long exact sequence in cohomology

0 −→ H0(W,OW ) −→ H0(W,OW (S)) −→ H0(W, ι∗OS) −→ 0,

where the vanishing of H1(W,OW ) follows from the Calabi-Yau property of W .
From this sequence, we see that the restriction of a generic section of OW (S) to S
is a nonzero section of ι∗OS , which is a fortiori non-vanishing. Thus |S| is base-
point free and determines a map W → P1, since h0(OW (S)) = 2 by the exact
sequence above. �

To apply this proposition, we need to show that a general member S of the
pencil P is Calabi-Yau. When dim(W ) = 2 or 3, this will follow from the next
proposition, which is proved in [Har16].

Proposition 3.2. [Har16] If dim(W ) = 2, then a general member of the pencil P
is a smooth elliptic curve. If dim(W ) = 3, then a general member of the pencil P
is a smooth blow-up of a K3 surface S and, moreover, S is Batyrev-Borisov dual to
the intersection of the quasi-Fano varieties X1 and X2 from Section 3.1.

In the case where dim(W ) = 2, it therefore follows immediately from Proposition
3.1 that the pencil P is an elliptic fibration on W . However, if W is a Calabi-Yau
threefold and a general member of P is a blown up K3 surface Ŝ, then we will need
to get rid of the (−1)-curves in S before we can apply Proposition 3.1. We will do
this by performing a series of birational transformations.

Lemma 3.3. Let W be a Calabi-Yau threefold and let Ŝ be a blown up K3 surface
in W . If C is a (−1)-curve in Ŝ, then NC/W

∼= OP1(−1)⊕OP1(−1).

Proof. We have a short exact sequence of sheaves on C,

0 −→ ΘC −→ ΘW |C −→ NC/W −→ 0.

Since c1(ΘC) = 2 and c1(ΘW |C) = c1(ΘW )|C = 0, it follows that NC/W
∼= OP1(a)⊕

OP1(b) for some a, b ∈ Z with a+ b = −2 (see, for example, [Kat92, Section 1]).
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We may embed the normal bundle NC/Ŝ into NC/W to get a short exact sequence

of line bundles

0 −→ NC/Ŝ −→ NC/W −→ L −→ 0

for some line bundle L. Since C is a (−1)-curve in Ŝ, we know that NC/Ŝ
∼=

OP1(−1). Furthermore, we have that c1(L) = −1 from the fact that c1(NC/W ) =
−2, thus L ∼= OP1(−1). The long exact sequence in cohomology coming from the
above short exact sequence proves that H0(C,NC/W ) = 0 and therefore we must
have that NC/W = OP1(−1)⊕OP1(−1). �

Therefore, any (−1)-curve C in Ŝ may be blown up to produce a a variety W̃
with exceptional divisor a copy of P1 × P1. This copy of P1 × P1 can be smoothly
contracted along either ruling. Contracting along one ruling recovers W ; we denote
the variety obtained by contracting along the other ruling by W+. The strict

transform of Ŝ in W̃ is just Ŝ itself, but the contraction Ŵ → W+ contracts the
(−1)-curve C in Ŝ. This is an example of a birational operation called a flop.

Repeating this for all (−1) curves in Ŝ, we obtain a birational model of W which

is a smooth Calabi-Yau threefold in which Ŝ has been contracted to its minimal
model, which is a K3 surface. Call the Calabi-Yau threefold resulting from this
process Ŵ . Applying Proposition 3.1 to Ŵ , we see that we have proved:

Theorem 3.4. Let W be a Calabi-Yau threefold containing a smooth blown up K3
surface Ŝ. By performing a sequence of flops on W , we may obtain a birational

model Ŵ of W which admits a fibration π : Ŵ → P1, so that the minimal model S
of Ŝ is a general fibre of π.

Putting everything together, in the case of toric hypersurface Calabi-Yau three-
folds we obtain:

Corollary 3.5. If ∆ is a 4-dimensional reflexive polytope that admits a nef parti-
tion ∆1,∆2 and V is a general anticanonical hypersurface in X∆, then V admits
a Tyurin degeneration and its Batyrev dual W has a birational model which ad-
mits a fibration by K3 surfaces. Moreover, the general fibre in this fibration on
W is Batyrev-Borisov mirror dual to the complete intersection K3 surface in X∆

determined by ∆1,∆2.

Remark 3.6. There seems to be an inherent incompatibility between Batyrev (and
Batyrev-Borisov) duality and K3 surface fibrations on Calabi-Yau threefolds, since

one can show that even in very basic examples, there are exceptional curves in Ŝ
that cannot be avoided by simply changing the birational model of the toric ambient
space X∆◦ . A notable exception occurs when either ∆1 or ∆2 is 1-dimensional. In
this case, one of the two component quasi-Fano varieties to which V degenerates
is itself a toric variety. This is mirrored by the fact that X∆◦ admits a morphism
to P1 which induces the required K3 fibration on W . These seem to be a subset of
the “toric fibrations” which have been studied extensively in the physics literature
by a number of authors ([AKMS97, CCS13, GP13] to name a few).

Remark 3.7. One can consider more general refinements of nef partitions, by taking
a nef partition F1, . . . , Fℓ so that for each Ei, there is a subset Ii of {1, . . . , ℓ} so
that Ei = ∪j∈IiFj . These will give rise to generalized degenerations of the Calabi-
Yau V determined by E1, . . . , Ek to unions of quasi-Fano varieties, and families of
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Calabi-Yau varieties of codimension ℓ − k in W . The issue here, of course, is that
it is hard to prove that this gives a fibration on a birational model of W . Despite
this, these families of Calabi-Yau varieties surely have properties related to the LG
models of the appropriate quasi-Fano varieties.

Remark 3.8. Generalizing Corollary 3.5 to higher dimensions seems to be a chal-
lenge, since we have made use of both the minimal model program for surfaces and a
characterization of flops in three dimensions. Of course, both of these objects have
analogues in higher dimensions, but they are much more oblique and not likely to
be useful in such a general situation. As it stands, the results above suffice to show
that we obtain rational maps from W to P1 corresponding to every bipartite nef
partition of ∆.

3.3. Singular fibres and a comparison with LG models. Now we will analyze
the singular members of the pencil P , which are birational to the fibres of Ŵ . Using
this, we can give a very accurate description of the singular fibres of Ŵ , up to
birational transformations. As we shall see, the resulting theory meshes nicely with
the LG model picture described in Section 2. The results in this section can be
extended quite generally, but for simplicity we will restrict ourselves to the situation
of threefold hypersurfaces.

With notation as in the previous section, the nef partition ∆1,∆2 of ∆ determines
a pair of polytopes ∇1,∇2 ⊆ ∆◦, which are a nef partition of ∇ := Conv(∇1∪∇2) ⊆
∆◦. Note that this inclusion may be strict; it therefore does not follow that we have
a degeneration of W to quasi-Fano varieties dual to X1 and X2.

Our first goal is to look at the member of the pencil P over [s : t] = [0 : 1] and
understand its meaning in terms of the Tyurin degeneration described in Section
3.1.

Proposition 3.9. The member of the pencil P corresponding to [s : t] = [0 : 1] is
equal to ⋃

σ∈(∆◦\∇)∩N

(Dσ ∩W ).

In other words, the linear system defining the pencil P is associated to the line
bundle OW (

∑
σ∈(∆◦\∇)∩N Dσ|W ).

Proof. Recall that the pencil P is defined as the intersection of W with hypersur-
faces of the form

s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ − ta0

∏

σ∈∂∆◦∩N

zσ = 0.

Thus, at least on an open set of W , we may write this family of hypersurfaces as a
rational map from X∆◦ to P1, defined by φ : [zσ] 7→ [s : t] where

s =
∏

σ∈(∆◦\∇)∩N

zσ

t =

(
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ

)/(
∏

σ∈∂∇∩N

zσ

)

We want to show that this map is defined on W away from the base locus of
P . Note that homogeneity away from

∑
σ∈∂∇∩N Dσ is clear, since both terms are

sections of L := OX∆◦ (
∑

σ∈(∆◦\∇)∩N Dσ). Now, if σ ∈ ∇2, then the numerator in
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the expression for t above has a factor of zσ, since 〈σ, ρ〉 ≥ 0 for all ρ ∈ ∆1 and
σ ∈ ∇2. Thus both terms are also sections of L along Dσ for σ ∈ ∇2. Moreover, on
the restriction of φ to W , we notice that the expression for t can also be written as

(
∑

ρ∈∆2∩M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ

)/(
∏

σ∈∂∇∩N

zσ

)
.

and thus, for the same reason as above, both terms are sections of L alongDσ∩W for
σ ∈ ∇1. Finally, [BB96, Proposition 6.3] implies that ∇∩N = (∇1∩N)∪(∇2∩N),
so we deduce that the expressions for s and t above form honest global sections of
L|W . Thus the map φ is well-defined away from the base locus of L|W and the fibre
of φ over s = 0 is as required. �

It follows from the proof of Proposition 3.9 that the line bundle OW (Ŝ) is just
OW (

∑
σ∈(∆◦\∇)∩N Dσ). Since W is an anticanonical hypersurface, the intersec-

tion of a divisor Dσ with W is empty if and only if σ lies in the relative interior
of a facet of ∆◦. If σ is in the interior of a codimension 2 face of ∆◦, then a
calculation analogous to that performed in [Roh04, §3.3] shows that Dρ ∩W has
1 + ℓ∗(Γ(σ))ℓ∗(Γ(σ)∨) irreducible components, where Γ(σ) is the smallest face of
∆◦ containing σ, Γ(σ)∨ is the face of ∆ made up of points ρ satisfying 〈σ, ρ〉 = −1,
and ℓ∗(Γ) denotes the number of lattice points in the relative interior of Γ. Finally,
if σ lies in a codimension ≥ 3 face of ∆◦, then Dρ ∩W is irreducible for generic W .

Proposition 3.10. If σ is in (∆◦ \ ∇) ∩N , then Dρ ∩W has a single irreducible
component. Therefore, the member of the pencil P corresponding to [s : t] = [0 : 1]
has

#(∆◦ \ ∇) ∩N

irreducible components.

Proof. First, if σ is contained on the relative interior of a facet of ∆◦, then Γ(σ)∨

is a single vertex η of ∆. Without loss of generality, we can assume that η ∈ ∆1.
Therefore, 〈σ, ρ〉 ≥ −1 for all points ρ ∈ ∆ and 〈σ, ρ〉 = −1 if and only if ρ = η,
so, by definition, σ is in ∇1. Since, by [BB96, Proposition 6.3], all points of ∇∩N
are either in ∇1 or ∇2, it follows that no point of (∆◦ \ ∇) ∩ N is in the interior
of a facet of ∆◦. Thus for any point σ ∈ (∆◦ \ ∇) ∩N , the intersection Dσ ∩W is
nonempty.

It just remains to treat the case where σ lies in a codimension 2 face of ∆◦. Since
σ lies in (∆◦ \ ∇) ∩N , by definition there must be some ρ1 ∈ ∆1 and ρ2 ∈ ∆2 so
that 〈ρ1, σ〉 = 〈ρ2, σ〉 = −1. Therefore, Γ(σ)∨ contains points in both ∆1 and ∆2,
so is a face of neither. Given this, [BB96, Proposition 6.3] implies that Γ(σ)∨ does
not contain any points in its relative interior. So ℓ∗(Γ(σ)∨) = 0 and hence Dσ ∩W
has a single irreducible component. �

Remark 3.11. For W of arbitrary dimension, the same proof works to find the
number of components of the member of the pencil P corresponding to [s : t] = [0 :
1]. However, if dim(W ) ≥ 4 we do not know whether this may be interpreted as a

count of components of a singular fibre in a fibration on some birational model Ŵ
of W (see Remark 3.8).

Next we show that this number also has meaning with respect to the mirror
Calabi-Yau variety V and its degeneration to the union of X1 and X2.
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Proposition 3.12. If dim(∇1) = dim(∇2) = 4, then V ∩X1∩X2 is an irreducible
curve C of genus

g(C) = #(∆◦ \ ∇) ∩N − 1.

Proof. By construction, C is a complete intersection of sections of the line bundles
ω−1
X∆

(which determines V ), L1 = OX∆
(
∑

ρ∈∆1∩N Dρ) (which determines X1), and

L2 = OX∆
(
∑

ρ∈∆2∩N Dρ) (which determines X2). The Koszul complex resolving
OC is thus given by

ω2
X∆

→ (L−1
1 ⊗ ωX∆

)⊕ (L−1
2 ⊗ ωX∆

)⊕ ωX∆
→ L−1

1 ⊕ L−1
2 ⊕ ωX∆

→ OX∆

The corresponding second spectral sequence converges to Hi(C,OC [3]), so
⊕

p+q=i+3

′′E
p,q
∞

∼= Hi(C,OC).

The relevant portion of ′′Ep,q
1 is given by

H4(ω2
X∆

) → H4(L−1
1 ⊗ ωX∆

)⊕H4(L−1
2 ⊗ ωX∆

)⊕H4(ωX∆
) → C → 0

0 → 0 → 0 → 0
0 → 0 → 0 → 0
0 → 0 → 0 → 0
0 → 0 → 0 → C

Now, by [BB96, Theorem 2.5], we know that

h4(ω2
X∆

) = ℓ∗(2∆◦),

h4(ωX∆
) = 1

h4(L−1
1 ⊗ ωX∆

) = ℓ∗(∇1 +∆◦),

h4(L−1
2 ⊗ ωX∆

) = ℓ∗(∇2 +∆◦).

It is not then hard to see that this spectral sequence degenerates at the ′′E2 term
and h0(OC) = 1, hence C is irreducible. Since hi(OC) = 0 for i > 1, we have that
the top row of ′′Ep,q

1 above is exact except at the left-most term. Thus we can
compute that

g(C) = ℓ∗(2∆◦)− (ℓ∗(∇1 +∆◦) + ℓ∗(∇2 +∆◦)).

It remains to show that this is precisely the number of points in (∆◦ \ ∇) ∩N .
For this we need a small lemma.

Lemma 3.13. If Q is either ∇i or ∆◦, the number ℓ∗(Q + ∆◦) is equal to ℓ(Q),
where ℓ(Q) denotes the number of lattice points in Q.

Proof. The polytope ∆◦ is defined by the inequalities 〈σ, ρ〉 ≥ −1 for all points
ρ ∈ ∆. Similarly, ∇1 is defined by the inequalities 〈σ, ρ〉 ≥ −1 for all points ρ ∈ ∆1

and 〈σ, ρ〉 ≥ 0 for all points ρ ∈ ∆2. We shall prove the lemma for Q = ∇1; the
other cases are analogous.

Now, the polytope ∇1 +∆◦ is defined by the inequalities 〈σ, ρ〉 ≥ −2 for ρ ∈ ∆1

and 〈σ, ρ〉 ≥ −1 for ρ ∈ ∆2. Therefore a point in the interior of ∇1 +∆◦ satisfies
these inequalities strictly, and thus any lattice point in the interior of (∇1 + ∆◦)
has 〈σ, ρ〉 ≥ 0 for all ρ ∈ ∆2 and 〈σ, ρ〉 ≥ −1 for all ρ ∈ ∆1. But this is just the set
of all lattice points in ∇1. �
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From this lemma, we see that

ℓ∗(2∆◦)− (ℓ∗(∇1 +∆◦) + ℓ∗(∇2 +∆◦)) = ℓ(∆◦)− ℓ(∇1)− ℓ(∇1).

Moreover, [BB96, Proposition 6.3] shows that all lattice points of ∇ are lattice
points of either ∇1 or ∇2, so this is equal to

ℓ(∆◦)− ℓ(∇) + 1 = #(∆◦ \ ∇) ∩N + 1;

here the extra (+1) term corresponds to the fact that we have over-counted the ori-
gin, which is the intersection of ∇1 and ∇2. This completes the proof of Proposition
3.12. �

Remark 3.14. A very minor modification of this proof shows that, in the case where
V has dimension d ≥ 3, we have hd−2,0(V ∩ X1 ∩ X2) = #(∆◦ \ ∇) ∩ N − 1. If
dim(V ) = 2, then h0(V ∩X1 ∩X2) = #(∆◦ \ ∇) ∩N .

Putting everything together, we obtain the following theorem.

Theorem 3.15. If dim(V ) = dim(W ) = d ≥ 3, then the member of the pencil of
hypersurfaces P corresponding to [s : t] = [0 : 1] has exactly hd−2,0(V ∩X1∩X2)+1
components. If dim(V ) = dim(W ) = 2, then V ∩ X1 ∩ X2 is a set of points and
the member of the pencil of hypersurfaces P corresponding to [s : t] = [0 : 1] has
exactly #(V ∩X1 ∩X2) components.

Next we analyze the rest of the members of the pencil P on W . Our goal is
to show that the members corresponding to [1 : 0] and [1 : 1] are essentially the
singular fibres of the LG models of X1 and X2. Thus there is a very real sense in
which the pencil P on W is collecting information about the LG models of X1 and
X2.

First, however, we describe how these LG models are constructed. In [Har16],
it is shown that the naïve compactification of Givental’s [Giv98] Landau-Ginzburg
model for a complete intersection X in a toric variety X∆ is smooth if X has
dimension less than or equal to 3, and otherwise has only mild singularities.

This compactification is defined as follows. Assume that we have a polytope ∆
and a nef partition ∆1,∆2 of ∆, so that ∆1 and ∆2 contain no interior points.
In this setting, a general enough global section of the line bundle L1 associated to
∆1 determines a quasi-Fano hypersurface X in X∆. The compactified version of
Givental’s LG model for X is then the complete intersection Y ⊂ X∇ ×A1 cut out
by the equations

∑

ρ∈∆1∩M

aρ
∏

σ∈∇∩N

z
〈σ,ρ〉−σ1

min

σ = 0

ta0
∏

σ∈∇2∩N\0N

zσ −
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∇∩N

z
〈σ,ρ〉−σ2

min

σ = 0

where aρ are complex constants, t is the coordinate on A1, and σi
min is −1 if σ is

in ∇i and 0 otherwise. The superpotential w is just projection of this complete
intersection onto A1. It is shown in [Har16] that (Y,w) has the expected properties
for an LG model of X .

With this in place, we find:

Theorem 3.16. The members of the pencil P corresponding to [s : t] = [1 : 1] and
[1 : 0] are birational to the fibres over 0 of the LG models (Y1,w1) and (Y2,w2) of
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X1 and X2 respectively. In fact, for any choice of W and hypersurface P([1 : t])
with t ∈ C, there is a choice of LG model (Y,w) of either X1 or X2 so that P([1 : t])
is birational to a fibre of (Y,w).

Proof. Recall from Section 3.2 that we have an expression for a birational model of
W as the complete intersection in P1[s, t]×X◦

∆ given by the vanishing of

f1 := s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ − ta0

∏

σ∈∂∆◦∩N

zσ

f2 := s
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ − (s− t)a0

∏

σ∈∂∆◦∩N

zσ.

Note that f1 has a factor of
∏

σ∈∇2∩N\0N
zρ by the definition of ∇2, and an analo-

gous statement holds for f2, by the definition of ∇2.
Now if we let [s : t] = [1 : 1], then we obtain the complete intersection of

f1|[1:1] =
∑

ρ∈∆1∩M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ

f2|[1:1] =
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N

z〈σ,ρ〉+1
σ .

Note that this is precisely the complete intersection determining the fibre over 0 of
the LG model of X1, except compactified in X∆◦ instead of X∇.

To compare these compactifications, define a birational map ϕ from X∆◦ to X∇,
which sends zσ to zσ if σ ∈ ∂∇ ∩ N . The restriction of ϕ to the complement of
the torus invariant loci of codimension ≥ 2 simply has the effect of removing those
codimension 1 tori corresponding to points σ ∈ (∆◦ \ ∇) ∩N . Thus we see that ϕ
induces a birational map between P([1 : 1]) and the fibre over 0 of (Y1,w1) if no
components of P([1 : 1]) are contained in torus invariant loci of X∆◦ of codimension
≥ 2, and no component of P([1 : 1]) is contained in a divisorDσ for σ ∈ (∆◦\∇)∩N .

The first of these two claims is trivial: since each component of P([1 : 1]) is
of codimension 2 in X∆◦ , it is contained in a codimension ≥ 2 torus invariant
subvariety of X∆◦ if and only if it is the closure of such a torus invariant subvariety.
Since W contains no torus invariant subvarieties of X∆◦ , this cannot happen. The
second claim follows from the fact that if σ ∈ (∆◦ \ ∇) ∩ N , then Dσ ∩ W is
in P([0 : 1]). Thus P([1 : 1]) can only intersect Dσ in at most a codimension 2
subvariety of X∆◦ .

An identical argument suffices to show that P([1 : 0]) is birational to the fibre
over 0 of (Y2,w2), and in fact this shows that for any p ∈ P1 \ {[0 : 1]}, for a generic
choice of W there is a choice of i ∈ {1, 2} and an LG model (Yi,wi) so that P(p) is
birational to a fibre of (Yi,wi). �

As a philosophical remark, this proves that all of the interesting data surrounding
the pencil P on W is related to either the LG models of X1 and X2, or the variety
V ∩ X1 ∩ X2. Indeed, this is the same data as was used to determine the Tyurin
degeneration of V : X1 and X2 were the quasi-Fano hypersurfaces in X∆, and
V ∩X1 ∩X2 was the locus that needed to be blown up in X1 to obtain a smooth
degeneration.

In the case where both X1 and X2 are pullbacks to X∆ of ample hypersurfaces in
P∆ along the mpcp resolution map, then we can say even more using the following
theorem, proved in [Har16].
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Theorem 3.17. [Har16] With notation as above, suppose in addition that Xi is
the pull-back to X∆ of an ample hypersurface in P∆ and that dim∆ = d ≥ 4. Let
(Yi,wi) denote the LG model of Xi and let ρ0 denote the number of components in
its singular fibre over 0. Then

ρ0 = hd−2,1(Xi) + 1.

From this, we immediately obtain:

Corollary 3.18. Suppose that dim(V ) = dim(W ) = 3 and let ρp be the number of
irreducible components in the member of the pencil P corresponding to p ∈ P1. If
X1 and X2 are pullbacks of ample hypersurfaces in P∆, then

• ρ[1:0] = h2,1(X1) + 1,

• ρ[1:1] = h2,1(X2) + 1,

• ρ[0:1] = h1,0(C) + 1.

Remark 3.19. Note that the same result is true for Ŵ , as the birational transfor-
mation from W to Ŵ is an isomorphism in codimension 1. Thus the preceding
corollary can be interpreted as a count of components in singular fibres of the K3
surface fibration π : Ŵ → P1 on Ŵ .

Now let ℓ be the rank of the image of the restriction map H2(Ŵ ,C) → H2(S,C),
for S a smooth fibre of π. Using [DHNT16, Lemma 3.2], one can easily show that

h1,1(Ŵ ) =
∑

p∈P1

(ρp − 1) + ℓ+ 1

Moreover, by [Bat94] we see that h2,1(V ) = h1,1(W ) = h1,1(Ŵ ). So, noting that

h2,1(X̂1) = h2,1(X1)+g(C) (see, for instance, [Voi07, Theorem 7.31]), Theorem 2.5
gives ∑

p∈P1\{[1:0],[0:1],[1:1]}

(ρp − 1) + ℓ+ k = 20.

This implies that if Dolgachev-Nikulin mirror symmetry does not hold (in a
precise sense) for the K3 surfaces associated to the nef partition ∆1,∆2 and their

Batyrev-Borisov duals, then this failure is seen by the fibres of the fibration π : Ŵ →
P1 away from the points in the set {[1 : 0], [0 : 1], [1 : 1]}.

Finally, one may ask whether an analogue of Corollary 3.18 holds when V and W
are K3 surfaces. The difficulty here is in proving an analogue of Theorem 3.17: for
subtle combinatorial reasons, the proof given in [Har16] does not easily generalize
to the K3 surface case. However, we expect the following conjecture to hold in this
case:

Conjecture 3.20. Suppose that dim(V ) = dim(W ) = 2 and let ρp be the number of
irreducible components in the fibre of the elliptic fibration π : W → P1 over p ∈ P1.
If X1 and X2 are pullbacks of ample hypersurfaces in P∆, then

• ρ[1:0] = h1,1(X1)− h1,1(X∆) + 1,

• ρ[1:1] = h1,1(X2)− h1,1(X∆) + 1,
• ρ[0:1] is the number of points in V ∩X1∩X2 and the corresponding singular

fibre is semistable (Kodaira type In), and
• all other fibres of π are irreducible.

We will illustrate this conjecture with an example.
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Figure 2. Polytopes related to Example 3.21

Example 3.21 (Anticanonical hypersurfaces in (P1)3). Let us take V to be an anti-
canonical hypersurface in (P1)3. This is a K3 surface with Picard lattice of rank 3,
isomorphic to the lattice with Gram matrix



0 2 2
2 0 2
2 2 0


 .

There is a Tyurin degeneration of V to a union of two (1, 1, 1) divisors X1, X2

in (P1)3. The intersection V ∩ X1 ∩ X2 is 12 points. On the other side, we see
that there is an elliptic fibration on the mirror dual K3 surface W , which has three
reducible fibres of types I12, I2 and I2.

The polytope ∆ determining (P1)3 has vertices σ0, . . . , σ5 given by the columns
of the matrix 


1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1




The appropriate nef partition is E1 = {σ0, σ2, σ4} and E2 = {σ1, σ3, σ5}, which has
dual nef partition with

∇1 = Conv({(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 1), (0, 0, 0)})

∇2 = −∇1.

We draw the polytopes ∆◦, ∇1 and ∇2 in Figure 2. The leftmost picture in
Figure 2 is just the polytope ∆◦, the middle picture denotes ∇1 and ∇2 and the
picture on the right shows (∆◦ \∇)∩N . It is clear from the description of the fibre
over [0 : 1] that it is actually semi-stable, so it follows from Kodaira’s classification
of singular fibres of elliptic fibrations that the resulting fibre is necessarily of type
I12. The same cannot be said for the fibres over [1 : 0] and [1 : 1], which have
two components each, since it is not necessarily true that these fibres have normal
crossings. Kodaira’s classification can only be used to determine that these fibres
are either of type I2 or of type III.

4. Dolgachev-Nikulin mirror symmetry

Next we’ll turn our attention to K3 surfaces. As noted in the previous section, in
the setting of Batyrev-Borisov mirror symmetry, a refinement of the nef partition
defining our K3 surface V gives rise to both a Tyurin degeneration of V and an
elliptic fibration on the mirror K3 surface W . In the K3 surface case this appears
to be part of a wider correspondence, which seems to have first been noticed by
Dolgachev [Dol96], between Type II degenerations (of which Tyurin degenerations
are an example) and elliptic fibrations on the Dolgachev-Nikulin mirror.
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We begin by giving a precise statement of this correspondence. Suppose we
have a (pseudo-ample) L-polarized K3 surface V , for some lattice L. To define
the Dolgachev-Nikulin mirror of V , we first fix a primitive isotropic vector f in
the orthogonal complement L⊥ of L in the K3 lattice ΛK3

∼= H⊕3 ⊕ E⊕2
8 (where

H denotes the hyperbolic plane lattice and E8 is the negative definite root lattice
E8). With this in place, the Dolgachev-Nikulin mirror W of V is defined to be an
Ľ-polarized K3 surface, where

Ľ := (Zf)⊥L⊥/Zf.

Note that this depends upon the choice of isotropic vector f .
By the discussion in [Dol96, Section 6] (see also [Sca87, Section 2.1]), fixing f

is equivalent to fixing a 0-dimensional cusp (Type III point) in the Baily-Borel
compactification DL of the period domain DL of L-polarized K3 surfaces. Call this
cusp P .

Then we have the following result, which is essentially contained in [Dol96, Re-
mark 7.11]:

Proposition 4.1. With notation as above, there is a bijective correspondence be-
tween 1-dimensional cusps in DL that pass through P , and primitive isotropic vec-
tors e ∈ Ľ.

Remark 4.2. Since 1-dimensional cusps in DL correspond to Type II degenerations
of V and isotropic vectors e ∈ Ľ correspond to elliptic fibrations on W , this gives
rise to a correspondence between Type II degenerations of V and elliptic fibrations
on W (up to automorphism).

Proof of Proposition 4.1. Suppose first that we have a 1-dimensional cusp C ⊂ DL

that passes through P . By [Sca87, Section 2.1], such cusps are in bijection with
rank two primitive isotropic sublattices of L⊥ that contain the vector f . So C gives
rise to a sublattice E of L⊥ and, since E is a primitive sublattice of (Zf)⊥L⊥ and E

contains f , we see that E ∩ Ľ is a primitive isotropic sublattice of Ľ of rank 1. Let
e denote a generator of this sublattice; then e is a primitive isotropic vector in Ľ.

Conversely, suppose we have a primitive isotropic vector e ∈ Ľ. By definition
of Ľ, we have 〈e, f〉 = 0. So the lattice E spanned by e and f is a rank two
primitive isotropic sublattice of L⊥. But this gives rise to a 1-dimensional cusp
passing through P . �

We will now illustrate this correspondence in some explicit examples, which will
provide a glimpse of some possible deeper structure.

4.1. H-polarized K3’s. We begin by looking at the Type II degenerations of H-
polarized K3’s. An H-polarized K3 surface may be constructed as an anticanonical
hypersurface in an mpcp resolution of the weighted projective space WP(1, 1, 4, 6).
However, the defining polytope of this weighted projective space does not admit
any nef partitions, so we cannot apply the theory of Section 3 to study it.

Instead, we will try a different approach to comparing Type II degenerations
and elliptic fibrations on the mirror. Note first that an H-polarized K3 surface V
naturally corresponds to a double cover of the Hirzebruch surface F4, ramified over
a divisor in the linear system |4s+12f |, where s is the class of the (−4)-section and
f is the class of a fibre (when there is no risk of confusion, we will always denote
the (−n)-section in a Hirzebruch surface Fn by s and a fibre of the ruling by f).
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So H-polarized K3 surfaces are equivalent to pairs (F4, B), where B ∈ |4s+12f | is
the branch divisor.

The moduli space of such pairs admits a KSBA compactification (see [Ale96a,
Ale96b, Ale06, KSB88]), which has been studied in detail by Brunyate [Bru15]. This
compactification admits a birational morphism to the usual Baily-Borel compacti-
fication of the moduli space of H-polarized K3 surfaces. The Type II degenerations
occur along two boundary components in this KSBA compactification, which map
to the two 1-dimensional cusps in the Baily-Borel compactification. These two
kinds of Type II degenerations may be described as follows:

(1) Degenerate V to a union X1
1 ∪ZX

1
2 defined as follows. X1

1 is a double cover
of F4 ramified over a smooth divisor in the linear system |2s + 12f |, and
Z ⊂ X1

1 is an elliptic curve given by the pull-back of the (−4)-section. X1
2

is also a double cover of F4, this time ramified over a smooth divisor in the
linear system |s + 4f |, and Z ⊂ X1

2 is the pull-back of a second smooth
divisor in the linear system |s+ 4f |.

Riemann-Roch easily yields that there is a 17-dimensional space of de-
formations of (X1

1 , Z) preserving the double covering structure, and a 1-
dimensional space of deformations of (X1

2 , Z). To glue these components
together along Z, we need to ensure that the elliptic curves Z in each com-
ponent are isomorphic; this imposes a single gluing condition. The total
configuration therefore has 17 + 1 − 1 = 17 moduli. It is easy to see that
any variety X1

1 ∪Z X1
2 defined in this way is d-semistable (in the sense of

[Fri83]), so admits a smoothing to a K3 surface by [Fri83, Theorem 5.10].
Thus, such degenerations lie along a 17-dimensional boundary component
(i.e. a boundary divisor) in the KSBA moduli space.

(2) Degenerate V to a union X2
1 ∪Z X2

2 , where both X2
1 and X2

2 are double
covers of F2 ramified over smooth divisors in the linear system |4s + 6f |
and Z is the pull-back of a fibre of the ruling on F2. Riemann-Roch yields
that each component (X2

i , Z) has 9 deformations that preserve the double
covering structure and, as before, there is a single gluing condition along
Z. The total configuration therefore has 9 + 9 − 1 = 17 moduli and is
d-semistable, so gives another boundary divisor of the moduli space.

Now we look at the mirror. Up to isometry, there are two 1-dimensional cusps in
DH , meeting in a unique 0-dimensional cusp. So we only have one choice of mirror
W : a K3 surface polarized by the lattice M := H ⊕ E8 ⊕ E8.

Now we match the Type II degenerations above with elliptic fibrations on the
mirror. From [CD07, Section 3.3], we know that an M -polarized K3 surface admits
two elliptic fibrations:

(1) The alternate fibration, which has an I∗12 and six I1’s. Note that the I∗12
fibre has 17 components, corresponding to the 17 moduli of the component
X1

1 in degeneration (1) above.
(2) The standard fibration, which has two II∗’s and four I1’s. Note that each

II∗ fibre has 9 components, corresponding to the 9 moduli of each of the
components X2

i in the Type II degeneration (2) above.

4.2. K3 surfaces of degree two. Now consider K3 surfaces of degree two (i.e. po-
larized by the rank one lattice 〈2〉). A K3 surface V of degree 2 may be constructed
as an anticanonical hypersurface in the weighted projective space WP(1, 1, 1, 3).
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This toric variety is determined by the polytope ∆ ⊂MR
∼= R3 with vertices given

by the columns σ1, σ2, σ3, σ4 of the matrix



1 0 0 −1
0 1 0 −1
0 0 1 −3


 .

Up to automorphism, there is only one bipartite nef partition of this polytope,
given by E1 = {σ1, σ2, σ4} and E2 = {σ3}. The dual nef partition in NR has

∇1 = Conv(−e∗1 − e∗2,−e
∗
1 − e∗2 + e∗3,−e

∗
1 + 2e∗2, 2e

∗
1 − e∗2)

∇2 = Conv(0N ,−e
∗
3, 3e

∗
1 − e∗3, 3e

∗
2 − e∗3)

where e1, e2 and e3 are basis vectors of MR and e∗i are their duals.
As in Example 3.21, we may look at the polytopes ∇1 and ∇2 in comparison to

∆◦ and note that the integral points in ∆◦ \∇ form a cycle of length 18. Thus the
fibre over [0 : 1] in the elliptic fibration on the Batyrev dual W described in Section
3.2 is of type I18. One can also check, using techniques described in [Har16], that
the fibres over [1 : 0] and [1 : 1] are irreducible.

Finally, in the degree two case it is well known that the Batyrev dual family
of K3 surfaces is actually Dolgachev-Nikulin dual (see, for instance, [Roh04]), so a
generic Batyrev dual K3 surface W has Picard lattice M2 := H⊕E8⊕E8⊕A1. The
elliptic fibrations on such an M2-polarized K3 surface were computed by Dolgachev
[Dol96, Remark 7.11]; we see that one of them has an I18 fibre and six I1’s, as
expected.

However, it is known (see, for instance, [Sca87, Section 6]) that the Baily-Borel
compactification of the moduli space of K3 surfaces of degree two has four 1-
dimensional cusps, corresponding to four types of Type II degenerations, yet the
example above only gives one. We can analyse the others using the same techniques
that we used in the H-polarized case above.

Indeed, it is well known that a K3 surface of degree two V naturally corresponds
to a double cover of P2 ramified over a smooth sextic curve. The moduli space of
K3 surfaces of degree two is therefore the same as the moduli space of pairs (P2, B)
where B is a sextic curve.

Alexeev and Thompson have studied a KSBA compactification [AT16] for the
moduli space of such pairs. The Type II degenerations occur along four boundary
components, which map to the four cusps in the Baily-Borel compactification. The
four corresponding kinds of Type II degenerations may be described as follows:

(1) Degenerate V to a union X1
1 ∪X

1
2 , defined as follows. X1

1 is a double cover
of F4 ramified over a smooth divisor in the linear system |2s + 12f |, and
Z ⊂ X1

1 is an elliptic curve given by the pull-back of the (−4)-section. X1
2

is a double cover of P2 ramified over a smooth conic, and Z ⊂ X1
2 is the

pull-back of a second smooth conic. This degeneration is in many ways
analogous to degeneration (1) in the H-polarized case.

In this case the pair (X1
1 , Z) admits 16 deformations preserving the dou-

ble covering structure, and (X1
2 , Z) has two. As in the H-polarized case,

there is a single gluing condition corresponding to choice of the elliptic
curve Z, so the total configuration has 17 + 2 − 1 = 18 moduli. It is easy
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to see that all such varieties are d-semistable, so they give rise to an 18-
dimensional boundary component (i.e. a boundary divisor) in the KSBA
moduli space.

(2) Degenerate V to a union X2
1 ∪Z X2

2 , defined as follows. X2
1 is a double

cover of F1 ramified over a smooth divisor in the linear system |2s + 6f |
and Z ⊂ X1

1 is the pull-back of the (−1)-section. X2
2 is a double cover of

P2 ramified over a smooth quartic and Z ⊂ X2
2 is the pull-back of a line.

Counting deformations that preserve the double cover structure, we see
that (X2

1 , Z) has 11 deformations and the (X2
2 , Z) component has 8. How-

ever, as usual there is a gluing condition along Z, so the total configuration
therefore has 11+8−1 = 18 moduli. Since such varieties are all d-semistable,
they correspond to a boundary divisor in the moduli space.

(3) The last two cases are more interesting. In the first, we degenerate V to
a single component X3

1 , defined to be the double cover of a cubic cone
ramified over a smooth anticanonical divisor. X3

1 thus contains two log
canonical singularities, corresponding to the pull-backs of the vertex of the
cone. This double cover has 18 moduli, and corresponds to a boundary
divisor in the KSBA moduli space.

Interestingly, this degeneration may be seen to be equivalent to the de-
generation given by the nef partition above. Indeed, if X1 ∪Z X2 is the
degeneration corresponding to this nef partition, we may obtain the degen-
eration X3

1 by blowing up along Z, then contracting X1 and X2. These
contractions give rise to the two log canonical singularities present in X3

1 .
(4) The final case is most difficult. In [AT16], the corresponding degeneration

of V is a union X4
1 ∪Z X4

2 , where each X4
i is a double cover of F0

2
∼=

WP(1, 1, 2) (obtained by taking a copy of F2 and contracting the (−2)-
section) ramified over a divisor in the linear system O(6) and cyclically
over the A1 singularity, and Z is the pull-back of a divisor in the linear
system O(1). This degeneration is in many ways analogous to degeneration
(2) in the H-polarized case.

Counting moduli, we see that each component (X4
i , Z) has 9 deforma-

tions that preserve the double covering structure, but there is, as always,
one gluing condition along Z. We thus have 9 + 9 − 1 = 17 deformations,
which does not give the expected divisor on the boundary. However, there
is also something wrong with this degeneration: one can easily check that
it is not d-semistable, so does not appear as the central fibre in a smooth
semistable degeneration of K3 surfaces.

There are two ways to resolve this. The first may be thought of as
analogous to the blow-up of V ∩X1 ∩X2 in X1 from Section 3: we simply
blow up an arbitrary point on the image of Z in one copy of F0

2. This
corresponds to blowing up a pair of points on Z in X4

1 , under the condition
that the two points blown up are exchanged by the involution defining the
double covering. After blowing up, X4

1 ∪Z X4
2 becomes d-semistable and

acquires an extra modulus, corresponding to the choice of point to blow up,
making the corresponding boundary component into a divisor.

However, there is also a second way to resolve this problem. Inspired by
(3), above, we could try introducing a third component between X4

1 and
X4

2 ; this has the appeal of maintaining the symmetry of the degenerate
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fibre. Such a central component X4
3 can be constructed as follows. Take

a copy of P2 and blow up three points in general position, to get a (−1)-
hexagon. Blow up one of the vertices of this hexagon again, then contract
the two (−2)-curves that result. One obtains a surface that has two A1

singularities, and the (−1)-hexagon becomes a pentagon whose sides have
self-intersections (−1,−1,− 1

2 , 0,−
1
2 ). The sum of the two (−1)-curves in

this pentagon gives a ruling andX4
3 is a double cover of this surface ramified

over three of its fibres, as well as cyclically over both of the A1 singulari-
ties. X4

3 glues to X4
1 and X4

2 along two isomorphic elliptic curves Z1 and
Z2, which are the pull-backs of the two (− 1

2 )-curves. We thus obtain a

degenerate fibre X4
1 ∪Z1

X4
3 ∪Z2

X4
2 .

Accounting for automorphisms, (X4
3 , Z1, Z2) has 2 deformations. So,

with this component included, the total moduli count is 9+9+2−1−1 = 18
(the two (−1)’s appear because there is a gluing condition associated to each
double curve). Moreover, the fibre X4

1 ∪Z1
X4

3 ∪Z2
X4

2 is d-semistable, so
we get a boundary divisor in moduli.

Now we again match with elliptic fibrations on the mirror. These are computed
by Dolgachev [Dol96, Remark 7.11] as:

(1) An elliptic fibration which has one I∗12, one I2, and four I1’s. Note that the
I∗12 fibre has 17 components, corresponding to the 17 moduli of (X1

1 , Z) in
degeneration (1) above, and the I2 fibre has two components, corresponding
to the two moduli of (X1

2 , Z).
(2) An elliptic fibration with one fibre of type I∗6 , one fibre of type III∗, and

three I1’s. As above, the I∗6 fibre has 11 components, corresponding to the
11 moduli of (X2

1 , Z) in degeneration (4) above, and the III∗ fibre has eight
components, corresponding to the eight moduli of (X2

2 , Z).
(3) An elliptic fibration with one fibre of type I18 and six I1’s. Once again, the

I18 fibre has 18 components, corresponding to the 18 moduli of the single
component X1

3 in degeneration (3), above.
(4) An elliptic fibration which has two II∗’s, one I2, and two I1’s. Note that

each II∗ fibre has 9 components, corresponding to the 9 moduli of (X4
1 , Z)

and (X4
2 , Z) in degeneration (2) above, and the I2 fibre has two compo-

nents. These two components can be thought of as corresponding to the
two points on Z which are blown up to make X1 ∪Z X2 d-semistable (c.f.
Conjecture 3.20), or as corresponding to the two moduli of the “extra” cen-
tral component (X4

3 , Z1, Z2).

4.3. Discussion. These results are highly suggestive of the idea that the corre-
spondence between Tyurin degenerations and elliptic fibrations on Batyrev dual
K3 surfaces, explored in Section 3, may extend to a broader correspondence be-
tween Type II degenerations of an L-polarized K3 surface V and elliptic fibrations
on its Dolgachev-Nikulin mirror W . Such a correspondence should have properties
that generalize those described in Section 3; the aim of this section is to discuss the
form that such properties may take.

Firstly, cases (3) and (4) of the considerations in Section 4.2 suggest that there
may be some correspondence between the choice of model for the Type II degener-
ation of V and some properties of the elliptic fibration. Thinking about this in the
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context of the threefold philosophy outlined in Remark 2.7, one might conjecture
the following.

Suppose first that we have a Type II degeneration of V to a configuration X1∪Z

X2 ∪Z · · · ∪Z Xk, where each Xi meets Xi−1 and Xi+1. Let ni be the number of
deformations of (Xi, Z) (where Z denotes the double locus on Xi and may have
more than one component) that preserve some notion of lattice polarization – this
last condition is to ensure that the deformed Type II fibres still smooth to L-
polarized K3 surfaces, and was arranged in the preceding examples by requiring
that deformations preserve the double covering structure; it also accounts for the
appearance of the h1,1(X∆) term in Conjecture 3.20. Then the fibre dimension of
the natural map from the moduli space of such pairs (Xi, Z) to the moduli space
of elliptic curves Z is equal to ni − 1.

Thus, noting that all elliptic double curves in the Type II degeneration are iso-

morphic, we see that such a Type II fibre should have
∑k

i=1(ni−1)+1 deformations.
We first conjecture that this number should equal 19− ℓ, where ℓ = rank(L). Then,
since the moduli space of V (as an L-polarized K3 surface) is (20− ℓ)-dimensional,
such Type II degenerations should lie along codimension 1 loci in an appropriate
compactification. We would thus get a decomposition of the 20− ℓ deformations of
V into contributions (ni − 1) from deformations of each Xi, a contribution 1 from
deformations of Z, and 1 for the codimension in the moduli space.

Now we look at the mirror picture. As proved in Proposition 4.1, the Type II
degeneration of V given above should correspond to an elliptic fibration π : W → P1

on the mirror W . We suggest that the decomposition X1 ∪Z X2 ∪Z · · · ∪Z Xk of
V corresponds to a “slicing” of the P1 base of π, so that each Xi corresponds to a
slice Si, as follows. S1 is a disc, which is glued along its boundary to one of the
boundaries of an annulus S2. The other boundary of the annulus S2 is then glued
to one of the boundaries of an annulus S3, and so on, until the remaining boundary
of the annulus Sk−1 is glued to a disc Sk.

The singular fibres of π should then be apportioned amoungst the slices as fol-
lows. If ρp denotes the number of components in the fibre of π over p, then the
slicing should satisfy

ni − 1 =
∑

p∈Si

(ρp − 1).

This gives a decomposition of the Picard rank (20 − ℓ) of W into contributions
ni − 1 from the singular fibres lying on the slice Si, a contribution 1 from the class
of a section, and a contribution 1 from the class of a fibre.

Note that this is completely compatible with the Tyurin degeneration picture
presented in Section 2 and the Batyrev-Borisov picture of Conjecture 3.20. Indeed,
in the Tyurin degeneration picture the slicing has two pieces S1 and S2, which are
the LG models of the two components X1 and X2 of the degenerate fibre X1∪ZX2.
Furthermore, in the setting of Conjecture 3.20 we also have a slicing into two pieces
S1 and S2, one of which contains the point [1 : 0] and the other of which contains
[1 : 1]. Which slice the point [0 : 1] falls into depends upon the choice of blow-up of
V ∩X1∩X2: if we blow up V ∩X1∩X2 in Xi (for i ∈ {1, 2}), then the corresponding
In fibre appears in the slice Si.

Finally, we describe how this slicing picture works in the H-polarized and de-
gree 2 cases considered above. In the H-polarized case we have the following two
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possibilities, numbered compatibly with Section 4.1. The labelling of the slices is
chosen so that the slice corresponding to the component Xj

i is labelled Sj
i .

(1) P1 is sliced into two pieces S1
1 and S1

2 , such that S1
1 contains the I∗12 fibre.

(2) P1 is sliced into two pieces S2
1 and S2

2 , each of which contains a II∗ fibre.

Moreover, in the degree two case we have the following four possibilities, num-
bered compatibly with Section 4.2.

(1) P1 is sliced into two pieces S1
1 and S1

2 , such that S1
1 contains the I∗12 fibre

and S1
2 contains the I2.

(2) P1 is sliced into two pieces S2
1 and S2

2 , such that S2
1 contains the I∗6 fibre

and S2
2 contains the III∗.

(3) In this case we have two choices of slicing, corresponding to the two types of
degeneration. For the degeneration given by the nef partition and Batyrev
mirror symmetry, P1 is sliced into two pieces S1 and S2, one of which
contains the I18 fibre. For the KSBA degeneration, we have a “degenerate”
slicing of P1 into a single piece, which contains all singular fibres.

(4) In the final case we also have two choices of slicing, corresponding to the
two types of degeneration. In the case where we blow up a pair of points,
P1 is sliced into two pieces S4

1 and S4
2 , such that S4

1 contains the II∗ fibre
and the I2 fibre, and S4

2 contains the other II∗. In the case where we have
three components in the degeneration, P1 is sliced into three pieces S4

1 , S4
3

and S4
2 , such that S4

1 and S4
2 are discs containing one II∗ fibre each, and

S3
4 is an annulus containing the I2 fibre.

5. Beyond Batyrev-Borisov mirror symmetry for threefolds

The aim of this section is to provide some evidence that the ideas presented in
Section 2 also hold for threefolds outside the toric setting considered in Section
3. We begin by showing that classical mirror symmetry suggests a correspondence
between Tyurin degenerations and K3 fibrations on mirror dual pairs of Calabi-Yau
threefolds. This should be thought of as a threefold analogue of Proposition 4.1.
Then we specialize our discussion to the case of threefolds fibred by mirror quartics,
as studied in [DHNT16], and show that, in that setting, the correspondence pre-
dicted by classical mirror symmetry is consistent with the construction presented
in Section 2.

5.1. Classical mirror symmetry for threefolds. Classical mirror symmetry
predicts that if V and W are mirror dual Calabi-Yau threefolds, then there is
a relation between monodromy operators acting on H3(V,Q) and divisors in the
closure of the Kähler cone of W . We will briefly sketch some of the details of this
relationship here, the interested reader may find more details in [CK99, Chapter
6].

Suppose that V → (∆∗)n is a family of Calabi-Yau threefolds over the punctured
polydisc, with fibre Vt = V above some t ∈ (∆∗)n. For each i ∈ {1, . . . , n}, let Ti
be the unipotent monodromy operator acting on H3(V,Q) coming from the loop
(t1, . . . , ti−1, e

2πit, ti+1, . . . , tn), where (t1, . . . , ti−1, ti+1, . . . , tn) are fixed constants,
and let Ni = log(Ti). The family V is said to have maximally unipotent monodromy
at (0, . . . , 0) if



28 C. F. DORAN, A. HARDER, AND A. THOMPSON

(1) for any n-tuple (a1, . . . , an) of positive integers, the weight filtration W• on
H3(V,Q) induced by

∑n
i=1 aiNi has dimW0 = dimW1 = 1 and dimW2 =

n+ 1, and
(2) if g0, . . . , gn is a basis of W2 chosen so that g0 spansW0, and mij are defined

by Nigj = mijg0, then the matrix (mij) is invertible.

If V has maximally unipotent monodromy, then mirror symmetry should produce
a map which assigns to each Ni a divisor Di in the closure of the Kähler cone of W .
Moreover, there should be an identification under mirror symmetry which gives
an isomorphism H3−i,i(V ) ∼= Hi,i(W ), and hence an isomorphism H3(V,C) ∼=⊕3

i=0H
i,i(W ), so that the action of Ni on H3(V,C) agrees with the action of the

cup product operator Ji(−) = (−) ∪ [−Di] under this correspondence. Thus, for
any n-tuple (a1, . . . , an) of non-negative integers, the weight filtration on H3(V,C)

induced by N :=
∑n

i=1 aiNi should be mirrored by the filtration on
⊕3

i=0H
i,i(W )

induced by J :=
∑n

i=1 aiJi, and the limit Hodge decomposition should correspond

to the decomposition
⊕3

i=0H
i,i(W ).

Now we specialize this discussion to the case of a Tyurin degeneration of Calabi-
Yau threefolds V → ∆. As in the previous sections, we write the central fibre of V
as X1 ∪Z X2 and let V denote a general fibre. Let T be the monodromy operator
acting on H3(V,Q) associated to a counterclockwise loop around 0. In order to
apply the predictions of mirror symmetry, we assume that T may be identified
with a loop

∏n
i=1 T

ai

i around a point of maximally unipotent monodromy in the
complex moduli space of V , where Ti are as above and ai are non-negative integers.
Define N := log(T ) =

∑n
i=1 aiNi. We will use the Clemens-Schmid exact sequence

associated to N to compute the limit mixed Hodge structure on H3(V ), then see
what this allows us to deduce about the mirror threefold W .

Remark 5.1. We note that the Tyurin degeneration V cannot have maximally unipo-
tent monodromy, for purely topological reasons (see, for instance, [Mor84, Corollary
2]), so T must correspond to a loop around some positive-dimensional boundary
component of the compactified complex moduli space of V . In particular, this
implies that some of the ai must be zero.

We begin by looking at the mixed Hodge structure on H3(V) given by Griffiths
and Schmid [GS75, Section 4]. The weight filtration W• on H3(V ,Q) has

GrW3 = H3(X1,Q)⊕H3(X2,Q)

and, if r1 and r2 are the restriction maps ri : H
2(Xi,Q) → H2(Z,Q), then

GrW2 = H2(Z,Q)/(im(r1) + im(r2)).

These weight graded pieces are then equipped with the appropriate Hodge filtra-
tions. Define integers u := rank(GrW2 )−2 and v := 1

2 rank(GrW3 ). Noting that KXi

is anti-effective, so that h3,0(Xi) = 0, we see that v = h2,1(X1) + h2,1(X2).
The Clemens-Schmid exact sequence gives us an exact sequence of mixed Hodge

structures

· · · −→ H5(V) −→ H3(V)
i∗
−→ H3

lim(V )
N
−→ H3

lim(V ) −→ H3(V) −→ · · ·

where i∗ is the pull-back on cohomology induced by the inclusion i : V →֒ V .

Lemma 5.2. H5(V) = 0, so the map i∗ is an injection.
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Proof. The Mayer-Vietoris sequence for X1 ∪Z X2 gives

· · · −→ H5(X1)⊕H5(X2) −→ H5(V) −→ H4(Z)
α

−→ H4(X1)⊕H4(X2) −→ · · · ,

where the map α is induced by the inclusions Z →֒ Xi.
Now, H5(X1) ⊕H5(X2) vanishes by Poincaré duality and the assumption that

h0,1(Xi) = 0. Moreover, as Z is an effective anticanonical divisor in both X1 and
X2, the image of the class [Z] ∈ H4(Z) of Z under α is non-trivial. But [Z] generates
H4(Z), so α must be injective. Thus the sequence above gives H5(V) = 0. �

Applying this lemma and some standard results on the Clemens-Schmid exact
sequence (see, for instance, [Mor84]) we obtain the following limit mixed Hodge
structure on H3(V )

Gr3F Gr2F Gr1F Gr0F
GrM4 C Cu C 0

GrM3 0 Cv Cv 0

GrM2 0 C Cu C

where M• is the monodromy weight filtration induced by N and F • is the limit
Hodge filtration.

Therefore, the divisor D =
∑n

i=1 aiDi on W which corresponds to N under
mirror symmetry should have

H0,0(Y ∨) H1,1(W ) H2,2(W ) H3,3(W )
coimage(J) C Cu C 0

ker(J)/im(J) 0 Cv Cv 0
im(J) 0 C Cu C

where, as before, J(−) = (−) ∪ [−D] denotes the cup-product operator. In partic-
ular, we see that J2 = 0. Since D is in the closure of the Kähler cone of W , results
of Oguiso [Ogu01, Example 2.3] show that mD is the class of a fibre in a fibration
of W by K3 or abelian surfaces, for some positive integer m.

Remark 5.3. Based on the ideas in the previous sections, we conjecture that mD
will always be the class of fibre in a K3 fibration on W . Oguiso [Ogu01, Example
2.3] gives a simple criterion to test for this: mD defines a K3 fibration on W if and
only if c2(W ) ·D > 0.

In light of this remark, we will assume throughout the remainder of this section
that mD defines a K3 fibration on W . Then the calculation above also shows that
the classes in Pic(W ) supported on fibres span a v+1 dimensional subspace, where
one of these classes is mD itself. Moreover, there is a rank u subspace of Pic(W )
with J(η) 6= 0 for each class η 6= 0 in this subspace. By the global invariant cycles
theorem, classes in this second subspace come from monodromy invariant cycles on
fibres of the K3-fibration on W . Thus the K3 surface fibration on W induced by
mD is Ľ-polarized (in the sense of [DHNT15, Definition 2.1]), for some lattice Ľ of
rank u.

Therefore we see that, if V admits a Tyurin degeneration to a union of threefolds
X1∪ZX2, and if restriction of divisors fromX1 andX2 induces a lattice polarization
of Z by a lattice L of rank 20 − u, then we expect the mirror W to admit an Ľ-
polarized K3 surface fibration, for some lattice Ľ of rank u. Moreover, the space
of divisors in W that are supported on fibres of the fibration should have rank
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v + 1 = h2,1(Y1) + h2,1(Y2) + 1. Note that this is completely consistent with the
predictions of Section 2.3.

5.2. Threefolds fibred by mirror quartics. Our next aim is to demonstrate how
this works in a special case: that of threefolds fibred by mirror quartic K3 surfaces.
As we will see, in this setting the predictions of classical mirror symmetry, described
above, mesh perfectly with the construction presented in Section 2.

A detailed study of threefolds fibred by mirror quartic K3 surfaces was conducted
in [DHNT16]. We begin by briefly recapping the main construction and results of
that paper, before describing how it fits into our picture.

The goal of [DHNT16] is to answer the following question: letW be a Calabi-Yau
threefold and assume that W admits a fibration over P1 by K3 surfaces, π : W →
P1. Assume that the general fibre of π is a K3 surface S with Pic(S) = M2,
for M2 := H ⊕ E8 ⊕ E8 ⊕ 〈−4〉 (i.e. S is Dolgachev-Nikulin mirror to a quartic
hypersurface in P3), and that the monodromy representation acts trivially on M2.
Such a structure is called an M2-polarized K3 fibration on W . In [DHNT16] we
attempted to classify Calabi-Yau threefolds admitting M2-polarized K3 fibrations.

In order to describe this classification, we start by taking a basic family, called
X in [DHNT16], which is a smooth resolution of the family of hypersurfaces

{λw4 + xyz(x+ y + z − w) = 0} ⊂ P3,

for λ 6= 1/256, 0. This defines a smooth family of K3 surfaces over P1\{0, 1/256,∞}.
The classification of M2-polarized fibrations from [DHNT16] can then be stated as:

Theorem 5.4. [DHNT16, Section 2] If π : W → P1 is an M2-polarized K3 fibration
on a Calabi-Yau threefold W , then there is a map

g : P1 → P1

so that W is birational to g∗X where

g∗X

��

// X

��

U
g|U

// P1 \ {0, 1/256,∞}

and U = g−1(P1 \ {0, 1/256,∞}).
Moreover, the preimage of 0 under g consists of either 1 or 2 points. If g−1(0)

is 2 points, then g is ramified to order 1, 2 or 4 at each point in g−1(0). If g−1(0)
is a single point, then g is ramified to order 8 at that point. If g is unramified over
1/256 then W is smooth, but if g ramifies over 1/256 then W may have isolated
singularities.

Using this, in [DHNT16, Section 4] we obtained a classification of smooth de-
formation equivalent families of such Calabi-Yau threefolds, under the assumption
that g is unramified over 1/256 (which, by the theorem above, ensures that our
Calabi-Yau threefolds will be smooth). This classification is determined by two
pieces of data: a pair of numbers i and j in {1, 2, 4}, denoting the orders of ram-
ification of g over 0, and a choice of partition µ := [x1, . . . , xk] of deg(g) = i + j,
denoting the ramification profile of g over ∞. Note here that the case where g−1(0)
is a single point is a deformation of the case where i = j = 4, so may be ignored;
see [DHNT16, Remark 3.1]. We call a general member of this family Wµ

i,j .
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Theorem 5.5. [DHNT16, Propositions 3.5, 3.8] If Wµ
i,j is as above, then

(1) h2,1(Wµ
i,j) = k,

(2) h1,1(Wµ
i,j) = 20 +

∑k
s=1(2x

2
s + 1) + ci + cj.

where c1 = 30, c2 = 10 and c4 = 0.

Finally, the proof of [DHNT16, Proposition 2.5] classifies the singular fibres of
these threefolds, up to small birational transformations. We give names to each
possibility and a description of one member of each equivalence class.

(1) I0: A smooth K3 surface. Along with the generic fibre, which clearly has
type I0, if t ∈ g−1(0) and g ramifies to order 4 at t, then the fibre over t is
of type I0.

(2) Iodp: A K3 surface with a single node. If t ∈ g−1(1/256), then the fibre
over t is of type Iodp.

(3) I∆n for n ∈ N: this is a semistable singular fibre whose dual graph is a
triangulation of the faces of a 3-dimensional simplex with sides of length
n. Such a fibre has 2n2 + 2 irreducible components. If t ∈ g−1(∞) and g
ramifies to order n at t, then the fibre over t is of type I∆n .

(4) II: A union of 11 smooth rational surfaces, one of which, E, has multiplicity
2, and the others, F1, . . . , F10, have multiplicity 1. Each Fi intersects E in
a smooth rational curve, but Fi ∩ Fj is empty for i 6= j. If t ∈ g−1(0) and
g ramifies to order 2 at t, then the fibre over t is of type II.

(5) IV: A normal crossings union of 31 smooth rational surfaces. One has
multiplicity 4, and the rest have multiplicities 3, 2 or 1. If t ∈ g−1(0) and
g is unramified at t, then the fibre over t is of type IV.

5.3. Degenerations in the mirror. Now we look at the mirror picture. The
Dolgachev-Nikulin mirror to an M2-polarized K3 surface is a K3 surface of degree 4
(〈4〉-polarized); generically such K3 surfaces are just smooth quartics in P3. There
are three Fano threefolds which contain a K3 surface of degree 4 as their anticanon-
ical hypersurface; these are X1, the quartic threefold in P4, X2, the double cover of
P3 ramified along a smooth generic quartic surface, and X4, which is just P3 itself.
Note that the integer i assigned to each Fano Xi is just the index of that Fano
threefold.

Let Z be a generic smooth anticanonical K3 surface in both Xi and Xj, for some

choice of integers i, j in {1, 2, 4}. ThenNZ/Xi
∼= ω−1

Xi
|Z ∼= OZ(i), where OZ(1) is the

restriction of a hyperplane section in P3 to Z. Thus if we take a normal crossings
union of Xi and Xj meeting along Z then, in accordance with the discussion in
Section 2.1, we cannot construct a Calabi-Yau threefold by smoothing Xi ∪Z Xj,
since NZ/Xi

⊗NZ/Xj
= OZ(i+ j) 6= OZ .

This is similar to the situation in Section 3.1, where we could not smooth X1 ∪Z

X2 without first blowing up the locus V ∩ X1 ∩ X2, and we will solve it in the
same way. Let C1, . . . , Ck be smooth curves in S cut out by sections of OZ(xs), for

positive integers x1, . . . , xk, so that
∑k

s=1 xs = i+ j. Then let f : X̃i → Xi be the
blow up of Xi in C1, . . . , Ck sequentially and let Ei be the exceptional divisor over
Ci, for i = 1, . . . , k.
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The canonical divisor of X̃i is given by f∗KXi
−
∑k

s=1 Es, so ω−1

X̃i

∼= OZ(−j).

Therefore, according to [KN94, Theorem 4.2], we may smooth X̃i∪ZXj to a Calabi-
Yau threefold. We denote this threefold by V µ

i,j , where, as before, µ denotes the

partition [x1, . . . , xk] of (i + j).
We claim that V µ

i,j and Wµ
i,j are mirror dual, in the classical sense. As a first

piece of evidence for this, we compute the Hodge numbers of V µ
i,j .

Proposition 5.6. Let i, j ∈ {1, 2, 4} and let µ = [x1, . . . , xk] be a partition of i+ j.
Then the Hodge numbers of the threefold V µ

i,j are given by

h1,1(V µ
i,j) = k,

h2,1(V µ
i,j) = 20 +

k∑

s=1

(2x2s + 1) + h2,1(Xi) + h2,1(Xj),

where h2,1(Xs) = 30 (resp. 10, 0) for s = 1 (resp. 2, 4).

Proof. By definition, V µ
i,j is a smoothing of X̃i ∪Z Xj . Define

q := rank(im(H2(X̃i,Z)⊕H2(Xj ,Z) → H2(Z,Z))).

Then Lee [Lee10, Corollary 8.2] shows that the Hodge numbers of V µ
i,j are given by

h1,1(V µ
i,j) = h2(X̃i) + h2(Xj)− q − 1,

h2,1(V µ
i,j) = 21 + h2,1(X̃i) + h2,1(Xj)− q.

Now, since the Néron-Severi group of Z is generated by the restriction of a
hyperplane section from Xi, we must have q = 1. Moreover, since we blew up Xi

a total of k times to obtain X̃i, we have h2(X̃i) = k + 1 and h2(Xj) = 1. Thus
h1,1(V µ

i,j) = k.

To compute h2,1(V µ
i,j), we begin by noting that a smooth curve Cs defined by a

section of OZ(xs) has self-intersection 4x2s in Z. So the genus formula for curves
on a surface gives g(Cs) = 2x2s + 1. Thus, by standard results on the cohomology
of a blow-up (see, for instance, [Voi07, Theorem 7.31]), we find

h2,1(X̃i) = h2,1(Xi) +

k∑

s=1

(2x2s + 1),

giving the claimed result for h2,1(V µ
i,j). Finally, the values of h2,1(Xs) are easy to

compute explicitly. �

Putting this proposition together with the result of Theorem 5.5, we obtain:

Corollary 5.7. Let i, j ∈ {1, 2, 4} be a pair of integers and let µ = [x1, . . . , xk] be
a partition of i + j. Then there is a mirror duality between the Hodge numbers of
the Calabi-Yau threefolds V µ

i,j and Wµ
i,j .

We expect that V µ
i,j is actually mirror to Wµ

i,j , but of course this is not a proof.
As further evidence, however, we can also compare filtrations as in Section 5.1. For
the threefolds V µ

i,j , we may compute the limit mixed Hodge structure associated to
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the degeneration to X̃i ∪Z Xj , to obtain

Gr3F Gr2F Gr1F Gr0F
GrM4 C C19 C 0

GrM3 0 Cv Cv 0

GrM2 0 C C19 C

for v = h2,1(Xi) + h2,1(Xj) +
∑k

s=1(2x
2
s + 1).

Now, for the threefolds Wµ
i,j , let J be the cup product operator with the negative

of the class of a fibre of the M2-polarized K3 surface fibration on Wµ
i,j . Then, by

the proof of [DHNT16, Proposition 3.5] and Proposition 5.6, we see that the rank
of the space of divisors in H1,1(Wµ

i,j) that are supported on fibres is

rank(ker(J)) = 1 +

k∑

s=1

(2x2s + 1) + h2,1(Xi) + h2,1(Xj) = v + 1.

Moreover, the image of J in H1,1(Wµ
i,j) is the span of the class of a fibre and the

image of J in H3,3(Wµ
i,j) spans H3,3(Wµ

i,j). Finally, the image of J in H2,2(Wµ
i,j)

is the space of classes dual to divisors in H1,1(Wµ
i,j) swept out by monodromy

invariant divisors on a general fibre, which has rank 19. Thus, we obtain

H0,0(Xµ
i,j) H1,1(Wµ

i,j) H2,2(Wµ
i,j) H3,3(Wµ

i,j)

coimage(J) C C19 C 0
ker(J)/im(J) 0 Cv Cv 0

im(J) 0 C C19 C

and the duality of bifiltered vector spaces discussed in Section 5.1 is satisfied in this
case.

Finally, we note that restriction of divisors from Xi and Xj induces a lattice
polarization of Z by the lattice 〈4〉, whilst the K3 surface fibration on Wµ

i,j is
M2-polarized. As expected from our previous calculations, these two lattices are
Dolgachev-Nikulin mirror dual.

5.4. Relationship to LG models. Now we will see how this fits with the results
of Section 2. We begin by describing the LG models of X1, X2 and X4. Again, we
note that these threefolds can be constructed from the basic K3 fibred threefold X .

Theorem 5.8. [Gol07, DHK+16] Define gℓ : A
1 → A1 by gℓ(t) = tℓ. Then the LG

model (Yℓ,wℓ) of Xℓ is a partial compactification of g∗ℓX .

In fact, it follows from our classification of singular fibres in Section 5.2 that

(1) (Y1,w1) has two singular fibres in A1, located at 0 and 1/256, of types IV
and Iodp respectively,

(2) (Y2,w2) has three singular fibres in A1, located at 0 and ±
√
1/256, of types

II and Iodp respectively,

(3) (Y4,w4) has four singular fibres in A1, located at 4

√
1/256, all of which have

type Iodp. Its fibre over 0 has type I0.

The following ansatz has been suggested by Katzarkov [Kat09]:

Ansatz 5.9. Blowing up a Fano threefold X in a smooth curve of genus g ≥ 2 has
the effect of deforming the LG model (Y,w) of X, so that a semistable fibre with
g + 1 irreducible components moves from infinity to a point in A1.
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By this logic, we can induce that if X̃ℓ is as above, then its LG model (Ỹℓ, w̃ℓ)
has singular fibres of the types listed above for (Yℓ,wℓ), along with fibres of type
I∆xs

, for s = 1, . . . , k, since a smooth curve Cs determined by a section of OZ(xs)

has genus 2x2s + 1.
By the results of [DHNT16, Section 4], generically we may choose the map g

determining Wµ
i,j so that its ramification points not lying over 0 and ∞ are all of

order 2, and so that all nonzero branch points λ of g have |λ| ≥ R for some real
number R > 1/256. Then there are two components to the preimage of the disc
UR = {z ∈ C : |z| < R}, corresponding to the two preimages of 0. Let U ℓ

R be
the component of g−1(UR) containing the ramification point of g of order ℓ over 0
(for ℓ ∈ {i, j}). Then the restriction of the fibration π on Wµ

i,j to U ℓ
R is a fibration

over a disc with a fibre of type IV, II or I0 over g−1(0), depending on whether
ℓ = 1, 2 or 4 respectively, and ℓ fibres of type Iodp. In fact, this fibration over U ℓ

R

is deformation equivalent to the LG model of Xℓ, in the sense that as R → ∞, the
map g degenerates to a stable map from a pair of rational curves Ci and Cj meeting
at a point, such that the restriction of g to Cℓ is gℓ. We also see that monodromy
around the boundary of U ℓ

R is equal to the monodromy around ∞ of the the LG
model (Yℓ,wℓ).

Away from 0 and ∞, we have that the restriction of π to g−1(P1\UR) has singular
fibres of type I∆xi

, for i = 1, . . . , k, and these account for all of the singular fibres of

π restricted to g−1(P1 \UR). We thus obtain the following theorem; which is highly
reminiscent of our philosophy in the K3 surface case (see Section 4.3).

Theorem 5.10. The threefold Wµ
i,j is topologically equivalent to the gluing of the

LG model of Xj to the LG model of X̃i, as described in Section 2.2.

6. Non-commutative fibrations

Now we turn our attention to ways in which this construction can fail. Suppose
that V and W are mirror dual Calabi-Yau threefolds. The computation in Section
5.1 suggests that, if a Tyurin degeneration of V occurs along a locus in the moduli
space of V that contains a maximally unipotent monodromy point, then there
should exist a K3 fibration on W whose properties are consistent with the results
in Section 2.3.

However, it is also possible for Tyurin degenerations to occur along loci in the
moduli space of V that are disjoint from points of maximally unipotent monodromy.
For such Tyurin degenerations the argument in Section 5.1 will break down and, in
particular, in such cases we will have no guarantee of the existence of K3 fibrations
on W . For an example where this occurs, consider:

Example 6.1. Let W be the complete intersection of two cubics in P5 and let V
be its Batyrev-Borisov mirror. Since h2,1(V ) = h1,1(W ) = 1, the dimension of
the moduli space of V is 1 and, indeed, it can be shown that the moduli space
of Calabi-Yau varieties deformation equivalent to V is P1 \ {0, 1,∞}. In [KP09]
Katzarkov and Przyjalkowski show that, after semi-stabilization, the degeneration
of V over ∞ is a Tyurin degeneration. The degenerate fibre is a union of two
quasi-Fano threefolds X1, X2 meeting in a K3 surface Z, which has Picard rank 20
and transcendental lattice isomorphic to

(
2 1
1 2

)
.
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There are several problems with this example. First of all, we find that this
Tyurin degeneration is not connected to a point of maximally unipotent monodromy
in the moduli space of V , so the discussion above does not hold. An even more
grave issue is the fact that the K3 surface Z has no Dolgachev-Nikulin mirror.
We would therefore not expect a K3 surface fibration corresponding to this Tyurin
degeneration to appear on the mirror Calabi-Yau threefold W and, indeed, the
non-existence of such a fibration is easily verified, since h1,1(W ) = 1.

However, if we are willing to replace the mirror Calabi-Yau threefold W with its
bounded derived category of coherent sheaves D

b(W ), we do know how to apply
mirror symmetry to monodromy in non-maximally unipotent families. Indeed, if V
is a family of Calabi-Yau threefolds over a punctured disc U , such that there is a
symplectic form ω on V which restricts to a symplectic form on each fibre, then the
action of monodromy around 0 induces a symplectomorphism on a smooth fibre V .
According to [Sze04], this symplectomorphism induces an autoequivalence on the
Fukaya category Fuk(V, ω), which passes through mirror symmetry to produce an
element of AutEq(Db(W )).

Our goal is to understand what sort of autoequivalence this is. If π : W → P1

is a fibration of W by K3 surfaces, then there is a right derived pullback functor
Rπ∗ : Db(P1) → D

b(W ). We conjecture that the autoequivalence of D
b(W ) ob-

tained above is an autoequivalence related to the spherical functor Rπ∗. Moreover,
if p is a point in P1, then the inclusion gives a pullback Ri∗ : Db(P1) → D

b(p). We
can take the fibre product of these categories, denoted D

b(W ) ⊗Db(P1) D
b(p), to

give a category associated to a general fibre of W . We want this category to be the
bounded derived category of coherent sheaves on a K3 surface.

To state this idea more precisely, we need a definition. A triangulated category
T with Serre functor S is called d-Calabi-Yau if S is equivalent to [d], where [d]
indicates the natural “shift by d” functor. This is a useful notion because the
bounded derived category D

b(X) of coherent sheaves on a smooth projective variety
X is d-Calabi-Yau if and only if X is a Calabi-Yau variety of dimension d.

Conjecture 6.2. Let V be a Calabi-Yau variety of dimension d that admits a
Tyurin degeneration, and let W be a homological mirror of V . Then there is a
functor F : Db(P1) → D

b(W ) so that for a generic point p ∈ P1, the category
D

b(V )⊗Db(P1) D
b(p) is a (d− 1)-Calabi-Yau category.

Moreover, we expect that the fibres of such a categorical fibration are equivalent,
in an appropriate sense, to the Fukaya category of the Calabi-Yau Z = X1 ∩ X2,
where X1 ∪Z X2 is the Tyurin degeneration of V .

Example 6.3. Calabrese and Thomas [CT16] showed how this should work in the
setting of Example 6.1. Let f1 and f2 be cubics so that W = {f1 = f2 = 0} ⊂ P5.

Blowing up P5 along W , one obtains a five-fold P̃5 which is fibred over P1 by cubics
sf1 + tf2 = 0, for [s : t] ∈ P1. This variety has derived category

D
b(P̃5) = 〈Db(W ), π̃∗

D
b(P1)(i, 0) : i = 3, 4, 5〉

where π̃ : P̃5 → P1 is the natural map.
Using this, Calabrese and Thomas show that there is a fibration structure on

D
b(W ) satisfying the conditions of Conjecture 6.2 above. In this case the derived

categories Db(W )⊗Db(P1) D
b(p) are 2-Calabi-Yau categories, but they are not the

bounded derived category of coherent sheaves on any K3 or abelian surface; instead
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they are semi-orthogonal summands of the derived categories of the cubic fourfolds
cut out by the equations sf1 + tf2 = 0.

Moreover, according to Hassett [Has99], the transcendental lattice of a generic
cubic fourfold is isomorphic to

E2
8 ⊕U2 ⊕

(
−2 −1
−1 −2

)
,

which is precisely the Dolgachev-Nikulin dual lattice associated to the transcen-
dental lattice of the K3 surface Z in Example 6.1. We thus conjecture that the
non-commutative fibration found by Calabrese and Thomas [CT16] is mirror dual
to the Tyurin degeneration of Katzarkov and Przyjalkowski [KP09].

It may be possible to generate other examples like this one as follows. Suppose
that V is a family of Calabi-Yau threefolds over a small disc U , so that the general
fibre V has h2,1(V ) = 1 and the fibre over 0 is a Tyurin degeneration. Then the
matrix describing the monodromy action on H3(V,Q) associated to a loop around
0 has two Jordan blocks of rank 1.

The families of Calabi-Yau variations of Hodge structure lying over P1\{0, 1,∞}
with appropriate monodromy properties have been classified by Doran and Morgan
[DM06]. One can check that there are precisely three families in this classification
for which the monodromy matrix associated to ∞ has two Jordan blocks of rank
1. These families are mirrors to

(1) The (3, 3) complete intersection in P5,
(2) The (4, 4) complete intersection in WP(1, 1, 1, 1, 2, 2),
(3) The (6, 6) complete intersection in WP(1, 1, 2, 2, 3, 3).

This raises the following natural question.

Question 6.4. Are there categorical fibrations on D
b(W ) satisfying Conjecture

6.2, for W a (4, 4) complete intersection in WP(1, 1, 1, 1, 2, 2) or a (6, 6) complete
intersection in WP(1, 1, 2, 2, 3, 3)?

Neither of these Calabi-Yau threefolds W can admit commutative K3 fibrations,
since h1,1(W ) = 1, so if mirror dual fibrations exist then they are necessarily non-
commutative, as in Example 6.3 above.
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