12 research outputs found

    Hydration-Shell Transformation of Thermosensitive Aqueous Polymers

    No full text
    Although water plays a key role in the coil–globule transition of polymers and biomolecules, it is not clear whether a change in water structure drives or follows polymer collapse. Here, we address this question by using Raman multivariate curve resolution (Raman-MCR) spectroscopy to investigate the hydration shell structure around poly­(<i>N</i>-isopropylacrylamide) (PNIPAM) and poly­(propylene oxide) (PPO), both below and above the cloud point temperature at which the polymers collapse and form mesoscopic polymer-rich aggregates. We find that, upon clouding, the water surrounding long PNIPAM chains transforms to a less ordered and more weakly hydrogen bonded structure, while the water surrounding short PNIPAM and PPO chains remains similar above and below the cloud point. Furthermore, microfluidic temperature jump studies demonstrate that the onset of clouding precedes the hydration-shell structural transformation, and thus the observed water structural transformation is associated with ripening of aggregates composed of long-chain polymers, on a time scale that is long compared to the onset of clouding

    Expulsion of Ions from Hydrophobic Hydration Shells

    No full text
    Raman spectroscopy is combined with multivariate curve resolution to quantify interactions between ions and molecular hydrophobic groups in water. The molecular solutes in this study all have similar structures, with a trimethyl hydrophobic domain and a polar or charged headgroup. Our results imply that aqueous sodium and fluoride ions are strongly expelled from the first hydration shells of the hydrophobic (methyl) groups, while iodide ions are found to enter the hydrophobic hydration shell, to an extent that depends on the methyl group partial charge. However, our quantitative estimates of the corresponding ion binding equilibrium constants indicate that the iodide concentration in the first hydrophobic hydration shell is generally lower than that in the surrounding bulk water, and so an iodide ion cannot be viewed as having a true affinity for the molecular hydrophobic interface, but rather is less strongly expelled from such an interface than fluoride

    Influence of Cononsolvency on the Aggregation of Tertiary Butyl Alcohol in Methanol–Water Mixtures

    No full text
    The term cononsolvency has been used to describe a situation in which a polymer is less soluble (and so is more likely to collapse and aggregate) in a mixture of two cosolvents than it is in either one of the pure solvents. Thus, cononsolvency is closely related to the suppression of protein denaturation by stabilizing osmolytes. Here, we show that cononsolvency behavior can also influence the aggregation of tertiary butyl alcohol in mixtures of water and methanol, as demonstrated using both Raman multivariate curve resolution spectroscopy and molecular dynamics simulations. Our results imply that cononsolvency results from the cosolvent-mediated enhancement of the attractive (solvophobic) mean force between nonpolar groups, driven by preferential solvation of the aggregates, in keeping with Wyman–Tanford theory

    Molecular Aggregation Equilibria. Comparison of Finite Lattice and Weighted Random Mixing Predictions

    No full text
    Molecular aggregation equilibria are described using finite lattice and mean field theoretical modeling strategies, both built upon a random mixture reference system. The resulting predictions are compared with each other for systems in which each aggregate consists of a central solute molecule whose first coordination shell can accommodate multiple bound ligands. Solute–ligand (direct) and ligand–ligand (cooperative) interactions are found to influence aggregate size distributions in qualitatively different ways, as direct interactions produce a shape-invariant transformation of the aggregate size distribution, whereas cooperative interactions can lead to a vapor–liquid-like transformation. When half the ligand binding sites are filled, the corresponding aggregate size distributions are invariably unimodal in the absence of cooperative interactions, but when the latter interactions are attractive, the distributions are predicted to be bimodal below and unimodal above a critical temperature. Mean field and finite lattice predictions are found to be in globally good agreement with each other, except under near-critical conditions, and even there, the predicted average aggregate sizes and equilibrium constants are remarkably similar. Potential applications of these theoretical predictions to the analysis of experimental and molecular dynamics aggregation results are discussed

    Quantifying the Nearly Random Microheterogeneity of Aqueous <i>tert</i>-Butyl Alcohol Solutions Using Vibrational Spectroscopy

    No full text
    The microheterogeneous structure of aqueous tert-butyl alcohol (TBA) solutions is quantified by combining experimental, simulations, and theoretical results. Experimental Raman multivariate curve resolution (Raman-MCR) C–H frequency shift measurements are compared with predictions obtained using combined quantum mechanical and effective fragment potential (QM/EFP) calculations, as well as with molecular dynamics (MD), random mixture (RM), and finite lattice (FL) predictions. The results indicate that the microheterogeneous aggregation in aqueous TBA solutions is slightly less than that predicted by MD simulations performed using either CHARMM generalized force field (CGenFF) or optimized parameters for liquid simulations all atom (OPLS-AA) force fields but slightly more than that in a self-avoiding RM of TBA-like molecules. The results imply that the onset of microheterogeneity in aqueous solutions occurs when solute contact free energies are about an order of magnitude smaller than thermal fluctuations, thus suggesting a fundamental bound of relevance to biological self-assembly

    Micelle Structure and Hydrophobic Hydration

    No full text
    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated <i>n</i>-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized

    CO<sub>2</sub> Hydration Shell Structure and Transformation

    No full text
    The hydration-shell of CO<sub>2</sub> is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with <i>ab initio</i> molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO<sub>2</sub>. Our results reveal that while the hydration-shell of CO<sub>2</sub> is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO<sub>2</sub>-water hydrogen bond. Moreover, we find that the hydration-shell of CO<sub>2</sub> undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO<sub>2</sub> hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures

    Temperature-Dependent Hydrophobic Crossover Length Scale and Water Tetrahedral Order

    No full text
    Experimental Raman multivariate curve resolution and molecular dynamics simulations are performed to demonstrate that the vibrational frequency and tetrahedrality of water molecules in the hydration-shells of short-chain alcohols differ from those of pure water and undergo a crossover above 100 °C (at 30 MPa) to a structure that is less tetrahedral than pure water. Our results demonstrate that the associated crossover length scale decreases with increasing temperature, suggesting that there is a fundamental connection between the spectroscopically observed crossover and that predicted to take place around idealized purely repulsive solutes dissolved in water, although the water structure changes in the hydration-shells of alcohols are far smaller than those associated with an idealized “dewetting” transition

    Specific Ion Effects in Amphiphile Hydration and Interface Stabilization

    No full text
    Specific ion effects can influence many processes in aqueous solutions: protein folding, enzyme activity, self-assembly, and interface stabilization. Ionic amphiphiles are known to stabilize the oil/water interface, presumably by dipping their hydrophobic tails into the oil phase while sticking their hydrophilic head groups in water. However, we find that anionic and cationic amphiphiles adopt strikingly different structures at liquid hydrophobic/water interfaces, linked to the different specific interactions between water and the amphiphile head groups, both at the interface and in the bulk. Vibrational sum frequency scattering measurements show that dodecylsulfate (DS<sup>–</sup>) ions do not detectably perturb the oil phase while dodecyltrimethylammonium (DTA<sup>+</sup>) ions do. Raman solvation shell spectroscopy and second harmonic scattering (SHS) show that the respective hydration-shells and the interfacial water structure are also very different. Our work suggests that specific interactions with water play a key role in driving the anionic head group toward the water phase and the cationic head group toward the oil phase, thus also implying a quite different surface stabilization mechanism
    corecore