8 research outputs found

    CB1 Receptor Antagonism Blocks Stress-Potentiated Reinstatement of Cocaine Seeking in Rats

    Get PDF
    Rationale Under some conditions, stress, rather than directly triggering cocaine seeking, potentiates reinstatement to other stimuli, including a subthreshold cocaine dose. The mechanisms responsible for stress-potentiated reinstatement are not well defined. Endocannabinoid signaling is increased by stress and regulates synaptic transmission in brain regions implicated in motivated behavior. Objectives The objective of this study was to test the hypothesis that cannabinoid type 1 receptor (CB1R) signaling is required for stress-potentiated reinstatement of cocaine seeking in rats. Methods Following i.v. cocaine self-administration (2 h access/day) and extinction in male rats, footshock stress alone does not reinstate cocaine seeking but reinstatement is observed when footshock is followed by an injection of an otherwise subthreshold dose of cocaine (2.5 mg/kg, i.p.). CB1R involvement was tested by systemic administration of the CB1R antagonist AM251 (0, 1, or 3 mg/kg, i.p.) prior to testing for stress-potentiated reinstatement. Results Stress-potentiated reinstatement was blocked by both 1 and 3 mg/kg AM251. By contrast, AM251 only attenuated food-reinforced lever pressing at the higher dose (i.e., 3 mg/kg) and did not affect locomotor activity at either dose tested. Neither high-dose cocaine-primed reinstatement (10 mg/kg, i.p.) nor footshock stress-triggered reinstatement following long-access cocaine self-administration (6 h access/day) was affected by AM251 pretreatment. Footshock stress increased concentrations of both endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, in regions of the prefrontal cortex. Conclusions These findings demonstrate that footshock stress increases prefrontal cortical endocannabinoids and stress-potentiated reinstatement is CB1R-dependent, suggesting that CB1R is a potential therapeutic target for relapse prevention, particularly in individuals whose cocaine use is stress-related

    17β-Estradiol Potentiates the Reinstatement of Cocaine Seeking in Female Rats: Role of the Prelimbic Prefrontal Cortex and Cannabinoid Type-1 Receptors

    Get PDF
    Clinical observations imply that female cocaine addicts experience enhanced relapse vulnerability compared with males, an effect tied to elevated estrogen phases of the ovarian hormone cycle. Although estrogens can enhance drug-seeking behavior, they do not directly induce reinstatement on their own. To model this phenomenon, we tested whether an estrogen could augment drug-seeking behavior in response to an ordinarily subthreshold reinstatement trigger. Following cocaine self-administration and extinction, female rats were ovariectomized to isolate estrogen effects on reinstatement. Although neither peak proestrus levels of the primary estrogen 17β-estradiol (E2; 10 μg/kg, i.p., 1-h pretreatment) nor a subthreshold cocaine dose (1.25 mg/kg, i.p.) alone were sufficient to reinstate drug-seeking behavior, pretreatment with E2 potentiated reinstatement to the ordinarily subthreshold cocaine dose. Furthermore, E2 microinfusions revealed that E2 (5 μg/0.3 μl, 15-min pretreatment) acts directly within the prelimbic prefrontal cortex (PrL-PFC) to potentiate reinstatement. As E2 has been implicated in endocannabinoid mobilization, which can disinhibit PrL-PFC projection neurons, we investigated whether cannabinoid type-1 receptor (CB1R) activation is necessary for E2 to potentiate reinstatement. The CB1R antagonist AM251 (1 or 3 mg/kg, i.p., 30-min pretreatment) administered prior to E2 and cocaine suppressed reinstatement in a dose-dependent manner. Finally, PrL-PFC AM251 microinfusions (300 ng/side, 15-min pretreatment) also suppressed E2-potentiated reinstatement. Together, these results suggest that E2 can augment reactivity to an ordinarily subthreshold relapse trigger in a PrL-PFC CB1R activation-dependent manner

    Stress Promotes Drug Seeking Through Glucocorticoid-Dependent Endocannabinoid Mobilization in the Prelimbic Cortex

    Get PDF
    Background Clinical reports suggest that rather than directly driving cocaine use, stress may create a biological context within which other triggers for drug use become more potent. We hypothesize that stress-induced increases in corticosterone “set the stage” for relapse by promoting endocannabinoid-induced attenuation of inhibitory transmission in the prelimbic cortex (PL). Methods We have established a rat model for these stage-setting effects of stress. In this model, neither a stressor (electric footshock) nor stress-level corticosterone treatment alone reinstates cocaine seeking following self-administration and extinction, but each treatment potentiates reinstatement in response to an otherwise subthreshold cocaine priming dose (2.5 mg/kg, intraperitoneal). The contributions of endocannabinoid signaling in the PL to the effects of stress-level corticosterone on PL neurotransmission and cocaine seeking were determined using intra-PL microinfusions. Endocannabinoid-dependent effects of corticosterone on inhibitory synaptic transmission in the rat PL were determined using whole-cell recordings in layer V pyramidal neurons. Results Corticosterone application attenuated inhibitory synaptic transmission in the PL via cannabinoid receptor type 1 (CB1R)– and 2-arachidonoylglycerol–dependent inhibition of gamma-aminobutyric acid release without altering postsynaptic responses. The ability of systemic stress-level corticosterone treatment to potentiate cocaine-primed reinstatement was recapitulated by intra-PL injection of corticosterone, the CB1R agonist WIN 55,212-2, or the monoacylglycerol lipase inhibitor URB602. Corticosterone effects on reinstatement were attenuated by intra-PL injections of either the CB1R antagonist, AM251, or the diacylglycerol lipase inhibitor, DO34. Conclusions These findings suggest that stress-induced increases in corticosterone promote cocaine seeking by mobilizing 2-arachidonoylglycerol in the PL, resulting in CB1R-mediated attenuation of inhibitory transmission in this brain region

    Sex, Drugs, & Prefrontal Cortex: Influence of Biological Sex on Cocaine Seeking

    No full text
    Clinical observations imply that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared to males, particularly within contexts of stress or peak levels of the primary estrogen 17β-estradiol (E2). We previously demonstrated that stress can potentiate cocaine seeking in male rats. The present studies investigated the influence of biological sex on stress-potentiated cocaine seeking, the ability of E2 to potentiate cocaine seeking in females, mechanisms underlying potentiated reinstatement, and sex and stress hormone effects on PrL-PFC synaptic physiology.Initial investigations revealed that, despite comparable self-administration and extinction, females display a lower threshold for cocaine-primed reinstatement than males. Unlike males, footshock stress (15-min) failed to potentiate reinstatement to subthreshold cocaine in females, while restraint stress (15-min) potentiated reinstatement in both sexes. Divergent footshock responding corresponded to sex differences in ultrasonic vocalizations, but not plasma corticosterone (CORT) or defensive behaviors. Systemic stress-level CORT administration (2 mg/kg, ip) reproduced stress-potentiated reinstatement in both sexes, but CORT-potentiation was only observed in females during diestrus and proestrus. As in males, CORT-potentiating effects were localized to the PrL-PFC (50 ng/0.3 µL) and found to be CB1R-dependent (300 ng/0.3 µL). In parallel investigations, potentiated reinstatement to subthreshold cocaine was observed during proestrus, and systemic proestrus-reproducing E2 (10 µg/kg, i.p.) potentiated reinstatement through actions in the PrL-PFC involving CB1Rs, estrogen receptor-β (ERβ), and g-protein coupled estrogen receptor (GPER) activation. Ex vivo whole-cell electrophysiological recording from female layer V/VI PrL-PFC pyramidal neurons revealed both CORT and E2 suppress inhibitory synaptic activity in a CB1R-dependent manner, and E2 effects additionally required ERβ and, to a lesser extent, GPER activation.In summary, stress and peak physiological E2 superimpose upon the inherently greater relapse vulnerability in females to potentiate reactivity to ordinarily weak triggers in females. Despite sex divergence in stressor responsivity, stress-level CORT reproduces potentiation in an estrous cycle-dependent manner. CORT and E2 regulate PrL-PFC synaptic activity and cocaine seeking in a CB1R-dependent manner, and E2 furthermore acts through PrL-PFC ERβ and GPER. These studies implicate the PrL-PFC as an integration site for hormonal regulation of behavior and highlight the nuanced influence of sex as a biological variable

    Circadian rhythm of circulating levels of the endocannabinoid 2 arachidonoylglycerol

    No full text
    Context: The endocannabinoid (eCB) system is involved in the regulation of food intake and of peripheral metabolism. Although the cross talk between energy metabolism and the circadian system is well documented, little is known about a potential circadian modulation of human eCB activity. Objective: The objective of the study was to define the 24-hour profile of circulating levels of the most abundant endogenous ligand of the CB1 receptor, 2-arachidonoylglycerol (2-AG), in healthy young nonobese adults studied under controlled bedtime, dietary, and activity conditions. Methods: Fourteen subjects participated in this 4-day laboratory study with fixed light-dark cycles, standardized meals, and bedtimes. Sleep was recorded each night. On the third day, blood sampling at 15- to 30-minute intervals began at 9:30 PM and continued for 24 hours. Cortisol, leptin, and ghrelin were assayed on all samples, whereas the levels of 2-AG and its structural analog, 2-oleoylglycerol (2-OG), were measured at 60-minute intervals. Results: All participants exhibited a large circadian variation of 2-AG serum concentrations with a nadir around midsleep, coincident with the middle of the overnight fast. Levels of 2-AG increased continually across the morning, peaking in the early to midafternoon. Peak values represented, on average, a nearly 3-fold increase above nocturnal nadir levels. Concentrations of 2-OG followed a similar pattern, although with a shorter morning increase and lower amplitude. Conclusions: The findings demonstrate that activity of the eCB system is profoundly modulated by circadian rhythmicity and suggest that its impact on the regulation of food intake is suppressed during sleep and is maximal during early to midafternoon.SCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-arachidonoylglycerol

    No full text
    Study Objectives: Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. Methods: In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. Results: A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. Conclusions: Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. Commentary: A commentary on this article appears in this issue on page 495.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Sex, Stress, and Prefrontal Cortex: Influence of Biological Sex on Stress-Promoted Cocaine Seeking

    Get PDF
    Clinical reports suggest that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared with males, particularly during stress. We previously demonstrated that a stressor (footshock) can potentiate cocaine seeking in male rats via glucocorticoid-dependent cannabinoid type-1 receptor (CB1R)-mediated actions in the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the influence of biological sex on stress-potentiated cocaine seeking. Despite comparable self-administration and extinction, females displayed a lower threshold for cocaine-primed reinstatement than males. Unlike males, footshock, tested across a range of intensities, failed to potentiate cocaine-primed reinstatement in females. However, restraint potentiated reinstatement in both sexes. While sex differences in stressor-induced plasma corticosterone (CORT) elevations and defensive behaviors were not observed, differences were evident in footshock-elicited ultrasonic vocalizations. CORT administration, at a dose which recapitulates stressor-induced plasma levels, reproduced stress-potentiated cocaine-primed reinstatement in both sexes. In females, CORT effects varied across the estrous cycle; CORT-potentiated reinstatement was only observed during diestrus and proestrus. As in males, CORT-potentiated cocaine seeking in females was localized to the PrL-PFC and both CORT- and restraint-potentiated cocaine seeking required PrL-PFC CB1R activation. In addition, ex vivo whole-cell electrophysiological recordings from female layer V PrL-PFC pyramidal neurons revealed CB1R-dependent CORT-induced suppression of inhibitory synaptic activity, as previously observed in males. These findings demonstrate that, while stress potentiates cocaine seeking via PrL-PFC CB1R in both sexes, sensitivity to cocaine priming injections is greater in females, CORT-potentiating effects vary with the estrous cycle, and whether reactivity to specific stressors may manifest as drug seeking depends on biological sex
    corecore