27 research outputs found
Comparison of the Concentrations of REE & Lithium in Coal Ash Collected from Impoundments in the Southeastern United States
COMPARISON OF THE CONCENTRATION OF REE & LITHIUM IN COAL ASH COLLECTED FROM IMPOUNDMENTS IN THE SOUTHEASTERN UNITED STATES Authors Mrs. Kalyn Tew - United States - University of Alabama Dr. Rona Donahoe - United States - University of Alabama Abstract This study compares REE, REE+ and Li concentrations in coal ash (N\u3e350) collected from ten impoundments in the southeastern United States. Historical data (N=170) was compiled from 8 power plants. New samples (N=180) were collected from 8 impoundments, then digested (ASTM D6357) and analyzed via ICP-OES (EPA 200.8) for REE+ and Li concentrations. The average REE content for all samples is 385.64 ppm and the average REE+ content is 487.22 ppm. REE content varies significantly between impoundments, with a range of 893.70 - 131.0 ppm. The average lithium content for all samples is 220.25 ppm. For selected samples, major and minor element content was determined via XRF, and elemental mapping was performed via micro-XRF. Results indicate correlations between bulk coal ash composition, mineralogy, and REE content. A strong positive correlation exists between Li and REE content (r = 0.75). There is a weak positive correlation between K and REE content (r = 0.3). A weak negative correlation exists between Ca and REE content (r = -0.3). Micro-XRF mapping indicates that REEs partition into crystalline phosphate grains. These results give insights into the ease of extractability of REEs in coal ash, which is vital to understanding their viability as a resource
Recommended from our members
The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in southeast USA
Soils from many industrial sites in southeastern USA are contaminated with As because of the application of herbicide containing As2O3. Among those contaminated sites, two industrial sites, FW and BH, which are currently active and of most serious environmental concerns, were selected to characterize the occurrence of As in the contaminated soils and to evaluate its environmental leachability. The soils are both sandy loams with varying mineralogical and organic matter contents. Microwave-assisted acid digestion (EPA method 3051) of the contaminated soils indicated As levels of up to 325 mg/kg and 900 mg/kg (dry weight basis) for FW and BH soils, respectively. However, bulk X-ray powder diffraction (XRD) analysis failed to find any detectable As-bearing phases in either of the studied soil samples. Most of the soil As was observed by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM/EDX), to be disseminated on the surfaces of fine-grained soil particles in close association with Al and Fe. A few As-bearing particles were detected in BH soil using electron microprobe analysis (EMPA). Synchrotron micro-XRD and X-ray absorption near-edge structure (XANES) analyses indicated that these As-rich particles were possibly phaunouxite, a mineral similar to calcium arsenate, which could have been formed by natural weathering after the application of As2O3. However, the scarcity of those particles eliminated them from playing any important role in Assequestration.Synthetic acid rain sequential batch leaching experiments showed distinct As leaching behaviors of the two studied soil samples: BH soil, which has the higher As content, showed a slow, steady release of As, while FW soil, with a lower As content, showed a much quicker release and lower overall retention of As upon leaching. Sequential chemical extraction experiments were carried out using a simplified 4-step sequential chemical extraction procedure (SCEP) previously developed to characterize the fractionation of As and better understand the different leaching behaviors of the two studied soils. It was shown that only about 50 percent of the total extractable As was removed by the first two extraction steps, which represented the most weakly bonded and readily available As for environmental leaching. Compared with the sequential leaching experiments, it was further indicated that only half of the As associated with phases extracted by the second SCEP step was mobilized by SPLP leaching. Although microwave-assisted acid digestion results showed similar Al and Fe contents in both soils, the sequential chemical extraction experiments indicated that BH soil has a much higher content of amorphous Al and Fe phases and that a comparably higher portion of soil As was associated with those materials. The experimental results suggest that remediation efforts for the contaminated sites can be directed towards enhancing the formation of more stable As-bearing compounds in the soils to reduce the environmental leachability of As
Recommended from our members
In situ chemical fixation of arsenic-contaminated soils: An experimental study
This paper reports the results of an experimental study testing a low-cost in situ chemical fixation method designed to reclaim arsenic-contaminated subsurface soils. Subsurface soils from several industrial sites in southeastern U.S. were contaminated with arsenic through heavy application of herbicide containing arsenic trioxide. The mean concentrations of environmentally available arsenic in soils collected from the two study sites, FW and BH, are 325 mg/kg and 900 mg/kg, respectively. The soils are sandy loams with varying mineralogical and organic contents. The previous study [Yang L, Donahoe RJ. The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341] indicated that a large portion of the arsenic in both soils is associated with amorphous aluminum and iron oxyhydroxides and shows very slow release against leaching by synthetic precipitation. The soil's amorphous aluminum and iron oxyhydroxides content was found to have the most significant effect on its ability to retain arsenic.Based on this observation, contaminated soils were reacted with different treatment solutions in an effort to promote the formation of insoluble arsenic-bearing phases and thereby decrease the leachability of arsenic. Ferrous sulfate, potassium permanganate and calcium carbonate were used as the reagents for the chemical fixation solutions evaluated in three sets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4, KMnO4 and CaCO3. The optimum treatment solutions for each soil were identified based on the mobility of arsenic during sequential leaching of treated and untreated soils using the fluids described in EPA Method 1311 [USEPA. Method 1311: toxicity characteristic leaching procedure. Test methods for evaluating solid waste, physical/chemical methods. 3rd ed. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste. U.S. Government Printing Office; 1992] toxic characteristics leaching procedure (TCLP) and EPA Method 1312 [USEPA. Method 1312: synthetic precipitation leaching procedure. Test methods for evaluating solid waste, physical/chemical methods. 3rd ed. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste. U.S. Government Printing Office; 1994] synthetic precipitation leaching procedure (SPLP).Both FW and BH soils showed significant decreases in arsenic leachability for all three treatment solutions, compared to untreated soil. While soils treated with solution (3) showed the best results with subsequent TCLP sequential leaching, SPLP sequential leaching of treated soils indicated that lowest arsenic mobility was obtained using treatment solution (1). Treatment solution (1) with only FeSO4 is considered the best choice for remediation of arsenic-contaminated soil because SPLP sequential leaching better simulates natural weathering. Analysis of treated soils produced no evidence of newly-formed arsenic-bearing phases in either soil after treatment. Sequential chemical extractions of treated soils indicate that surface complexation of arsenic on ferric hydroxide is the major mechanism for the fixation process
Fluid Inclusions in the Stripa Granite and Their Possible Influence on the Ground-Water Chemistry
Fluid inclusions in quartz and calcite of the Proterozoic Stripa granite, central Sweden, demonstrate that the rock and its fracture fillings have a complex evolutionary history. The majority of inclusions indicate formation during a hydrothermal stage following emplacement of the Stripa pluton. Total salinities of quartz inclusions range from 0–18 eq.wt% NaCl for unfractured rock and from 0–10 eq.wt% for fractured rock. Vein calcites contain up to 25 eq.wt% NaCl but the inclusion size is larger and the population density is lower. Homogenization temperatures are 100–150°C for unfractured rock and 100–250° for fractured rock. Pressure corrections, assuming immediate post-emplacement conditions of 2 kbar, give temperatures about 160°C higher. Measurements of fluid-inclusion population-densities in quartz range from about 108 inclusions/cm3 in grain quartz to 109 inclusions/cm3 in vein quartz. Residual porosity from inclusion densities has been estimated to be at least 1% which is two orders of magnitude greater than the flow porosity. Breakage and leaching of fluid inclusions is proposed as an hypothesis for the origin of major solutes (Na-Ca-Cl) in the groundwater. Evidence for the hypothesis is based on (1) mass balance—only a small fraction of the inclusions need to leak to account for salt concentrations in the groundwater, (2) chemical signatures— ratios of fluid inclusion leachates (0.0101) match those ratios for the deep groundwaters (0.0107), (3) leakage mechanisms—micro-stresses from isostatic rebound or mining activities acting on irregular-shaped inclusions could cause breakage and provide connection with the flow porosity, and (4) experimental studies—water forced through low permeability granites leach significant quantities of salt. This hypothesis is consistent with the available data although alternate hypotheses cannot be excluded
Fluid Inclusions in the Stripa Granite and Their Possible Influence on the Ground-Water Chemistry
Fluid inclusions in quartz and calcite of the Proterozoic Stripa granite, central Sweden, demonstrate that the rock and its fracture fillings have a complex evolutionary history. The majority of inclusions indicate formation during a hydrothermal stage following emplacement of the Stripa pluton. Total salinities of quartz inclusions range from 0–18 eq.wt% NaCl for unfractured rock and from 0–10 eq.wt% for fractured rock. Vein calcites contain up to 25 eq.wt% NaCl but the inclusion size is larger and the population density is lower. Homogenization temperatures are 100–150°C for unfractured rock and 100–250° for fractured rock. Pressure corrections, assuming immediate post-emplacement conditions of 2 kbar, give temperatures about 160°C higher.
Measurements of fluid-inclusion population-densities in quartz range from about 108 inclusions/cm3 in grain quartz to 109 inclusions/cm3 in vein quartz. Residual porosity from inclusion densities has been estimated to be at least 1% which is two orders of magnitude greater than the flow porosity.
Breakage and leaching of fluid inclusions is proposed as an hypothesis for the origin of major solutes (Na-Ca-Cl) in the groundwater. Evidence for the hypothesis is based on (1) mass balance—only a small fraction of the inclusions need to leak to account for salt concentrations in the groundwater, (2) chemical signatures— ratios of fluid inclusion leachates (0.0101) match those ratios for the deep groundwaters (0.0107), (3) leakage mechanisms—micro-stresses from isostatic rebound or mining activities acting on irregular-shaped inclusions could cause breakage and provide connection with the flow porosity, and (4) experimental studies—water forced through low permeability granites leach significant quantities of salt. This hypothesis is consistent with the available data although alternate hypotheses cannot be excluded