269 research outputs found

    Synergies between astroparticle, particle and nuclear physics

    Full text link
    One overarching objective of science is to further our understanding of the universe, from its early stages to its current state and future evolution. This depends on gaining insight on the universe's most macroscopic components, for example galaxies and stars, as well as describing its smallest components, namely elementary particles and nuclei and their interactions. It is clear that this endeavour requires combined expertise from the fields of astroparticle physics, particle physics and nuclear physics. Pursuing common scientific drivers also require mastering challenges related to instrumentation (e.g. beams and detectors), data acquisition, selection and analysis, and making data and results available to the broader science communities. Joint work and recognition of these "foundational" topics will help all communities grow towards their individual and common scientific goals. The talk corresponding to this contribution has been presented during the special ECFA session of EPS-HEP 2019 focused on the update of the European Strategy of Particle Physics.Comment: Late submission to the Proceedings of the EPS-HEP 2019 Conference, Special ECFA session (https://indico.cern.ch/event/577856/sessions/291392

    Uncovering tau leptons-enriched semi-visible jets at the LHC

    Full text link
    This Letter proposes a new signature for confining dark sectors at the Large Hadron Collider. Under the assumption of a QCD-like hidden sector, hadronic jets containing stable dark bound states could manifest in proton-proton collisions. We present a simplified model with a ZZ' boson yielding the production of jets made up of dark bound states and subsequently leading to the decays of those that are unstable to τ\tau leptons and Standard Model quarks. The resulting signature is characterised by non-isolated τ\tau lepton pairs inside semi-visible jets. We estimate the constraints on our model from existing CMS and ATLAS analyses. We propose a set of variables that leverage the leptonic content of the jet and exploit them in a supervised jet tagger to enhance the signal-to-background separation. Furthermore, we discuss the performance and limitations of current triggers for accessing sub-TeV ZZ' masses, as well as possible strategies that can be adopted by experiments to access such low mass regions. We estimate that with the currently available triggers, a high mass search can claim a 5σ5 \sigma discovery (exclusion) of the ZZ' boson with a mass up to 4.5TeV (5.5TeV) with the full Run2 data of the LHC when the fraction of unstable dark hadrons decaying to τ\tau lepton pairs is around 50%50\%, and with a coupling of the ZZ' to right-handed up-type quarks of 0.25. Furthermore, we show that, with new trigger strategies for Run3, it may be possible to access ZZ' masses down to 700 GeV, for which the event topology is still composed of two resolved semi-visible jets.Comment: 11 pages, 8 figures, 2 tables, (published on EPJ C as Letter

    Simplified Models for Dark Matter and Missing Energy Searches at the LHC

    Get PDF
    The study of collision events with missing energy as searches for the dark matter (DM) component of the Universe are an essential part of the extensive program looking for new physics at the LHC. Given the unknown nature of DM, the interpretation of such searches should be made broad and inclusive. This report reviews the usage of simplified models in the interpretation of missing energy searches. We begin with a brief discussion of the utility and limitation of the effective field theory approach to this problem. The bulk of the report is then devoted to several different simplified models and their signatures, including s-channel and t-channel processes. A common feature of simplified models for DM is the presence of additional particles that mediate the interactions between the Standard Model and the particle that makes up DM. We consider these in detail and emphasize the importance of their inclusion as final states in any coherent interpretation. We also review some of the experimental progress in the field, new signatures, and other aspects of the searches themselves. We conclude with comments and recommendations regarding the use of simplified models in Run-II of the LHC.Comment: v2. references added, version submitted to journal. v1. 47 pages, 13 plot

    Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels

    Full text link
    Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. These suggestions include how to extend the spin-1 mediated simplified models already in widespread use to include lepton couplings. This document also provides analytic calculations of the relic density in the simplified models and reports an issue that arose when ATLAS and CMS first began to use preliminary numerical calculations of the dark matter relic density in these models.Comment: 19 pages, 4 figures; v2: author list and LaTeX problem fixe

    Prognostic and predictive role of EGFR pathway alterations in biliary cancer patients treated with chemotherapy and anti-EGFR

    Get PDF
    The association of anti-EGFR to gemcitabine and oxaliplatin (GEMOX) chemotherapy did not improve survival in biliary tract carcinoma (BTC) patients. Multiple mechanisms might be involved in the resistance to anti-EGFR. Here, we explored the mutation profile of EGFR extracellular domain (ECD), of tyrosine kinase domain (TKD), and its amplification status. EGFR mutational status of exons 12, 18-21 was analyzed in 57 tumors by Sanger sequencing. EGFR amplification was evaluated in 37 tumors by Fluorescent In Situ Hybridization (FISH). Kaplan-Meier curves were calculated using the log-rank test. Six patients had mutations in exon 12 of EGFR ECD and 7 in EGFR TKD. Neither EGFR ECD nor TKD mutations affected progression free survival (PFS) or overall survival (OS) in the entire population. In the panitumumab plus GEMOX (P-GEMOX) arm, ECD mutated patients had a worse OS, while EGFR TKD mutated patients had a trend towards shorter PFS and OS. Overall, the presence of mutations in EGFR or in its transducers did not affect PFS or OS, while the extrahepatic cholangiocarcinoma (ECC) mutated patients had a worse prognosis compared to WT. Nineteen out of 37 tumors were EGFR amplified, but the amplification did not correlate with survival. ECC EGFR amplified patients had improved OS, whereas the amplification significantly correlated with poor PFS (p = 0.03) in gallbladder carcinoma patients. The high molecular heterogeneity is a predominant feature of BTC: the alterations found in this work seem to have a prognostic impact rather than a predictive role towards anti-EGFR therapy

    Snowmass 2021 Cross Frontier Report: Dark Matter Complementarity (Extended Version)

    Full text link
    The fundamental nature of Dark Matter is a central theme of the Snowmass 2021 process, extending across all frontiers. In the last decade, advances in detector technology, analysis techniques and theoretical modeling have enabled a new generation of experiments and searches while broadening the types of candidates we can pursue. Over the next decade, there is great potential for discoveries that would transform our understanding of dark matter. In the following, we outline a road map for discovery developed in collaboration among the frontiers. A strong portfolio of experiments that delves deep, searches wide, and harnesses the complementarity between techniques is key to tackling this complicated problem, requiring expertise, results, and planning from all Frontiers of the Snowmass 2021 process.Comment: v1 is first draft for community commen

    HEP Community White Paper on Software trigger and event reconstruction

    Get PDF
    Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for software and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.Comment: Editors Vladimir Vava Gligorov and David Lang
    corecore