30 research outputs found

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    Rely-Guarantee Protocols

    No full text

    Implementation of quality control methods (physico-chemical, microbiological and sensory) in conjunction with multivariate analysis towards fish authenticity

    No full text
    Nowadays authenticity of foods and fish in particular has become of crucial importance because of high number of adulteration cases. Authenticity control has gained ground thanks to the development of several rapid physico-chemical and microbiological methods aiming at distinguishing one species from another based on solid scientific evidence. It has been proven that despite the precision and accuracy of robust analytical and protein and DNA-based techniques, detection of authenticity could not be claimed without resorting to multivariate analysis. This review summarizes both the most advanced and state of the art used techniques for detecting fish and seafood authenticity (both in terms of species and geographical origin). Another issue reported in this review is the preservation of fish and seafood through the implementation of old and novel techniques (ice, modified atmosphere packaging). Several informative tables were included in this paper referring to the employed quality control and sensory analysis methods and multivariate analysis for fish and seafood

    Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata *

    No full text
    Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the hostâ€Čs melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the hostâ€Čs melanization
    corecore