5 research outputs found

    Operating Strategy for Continuous Multistage Mixed Suspension and Mixed Product Removal (MSMPR) Crystallization Processes Depending on Crystallization Kinetic Parameters

    No full text
    Continuous multistage mixed suspension and mixed product removal (MSMPR) crystallization processes are useful for the large-scale production of particulate systems. However, the design of operating strategies to meet specific objectives and materials has not been completely investigated. In this work, the effect of important crystallization kinetic parameters on the optimal operating strategy was examined. The important parameters are the kinetic constants of the primary and secondary nucleation rates, the orders of the nucleation and growth rates, and the number of crystallizer stages. The analyses revealed that a drastic cooling strategy in the primary nucleation dominant region and linear cooling in the secondary nucleation dominant region are best for producing large particle sizes. A stage number of ∼3 is effective in both regions. These results can be utilized to roughly determine the operating strategy for a process, if the crystallization kinetic parameters are already roughly known

    DataSheet1_Optimizing reduced capture antibody conjugation to encoded hydrogel microparticles for enhanced multiplex immunoassays.docx

    No full text
    Multiplex detection of protein biomarkers in biological fluids facilitates high-throughput detection using small-volume samples, thereby enhancing efficacy of diagnostic assays and proteomic studies. Graphically encoded hydrogel microparticles conjugated with capture antibodies have shown great potential in multiplex immunoassays by providing superior sensitivity and specificity, a broad dynamic range, and large encoding capacity. Recently, the process of post-synthesis conjugation of reduced capture antibodies to unreacted acrylate moieties in hydrogel particles has been developed to efficiently prevent the aggregation of capture antibodies inside particles, which occurs when using conventional conjugation methods. This direct conjugation process yielded robust assay performance through homogeneous conjugation of the capture antibodies, and avoided the use of hydrolytically unstable linker additives. However, no research has been conducted to optimize the process of conjugating capture antibodies to the particles. We here present a strategy to optimize capture antibody conjugation based on the finding that excessive addition of capture antibodies during incubation can rather lower the amount of capture antibodies conjugated to the particles for some types of capture antibodies. Based on our optimized capture antibody conjugation process, a singleplex immunoassay for a selected target was conducted. Enhanced sensitivity compared with previous studies was confirmed. We also validated the increased specificity of multiplex detection through our optimization process. We believe that the optimization process presented herein for capture antibody conjugation will advance the field of encoded hydrogel microparticle-based immunoassays.</p

    Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients

    No full text
    Individuals who have lost normal pathways for communication need augmentative and alternative communication (AAC) devices.In this study, we propose a new electrooculogram (EOG)-based human-computer interface (HCI) paradigm for AAC that does not require a user’s voluntary eye movement for binary yes/no communication by patients in locked-in state (LIS). The proposed HCI uses a horizontal EOG elicited by involuntary auditory oculogyric reflex, in response to a rotating sound source. In the proposed HCI paradigm, a user was asked to selectively attend to one of two sound sources rotating in directions opposite to each other, based on the user’s intention. The user’s intentions could then be recognised by quantifying EOGs. To validate its performance, a series of experiments was conducted with ten healthy subjects, and two patients with amyotrophic lateral sclerosis (ALS). The online experimental results exhibited high-classification accuracies of 94% in both healthy subjects and in the ALS patients in cases where decisions were made every six seconds. The ALS patients also participated in a practical yes/no communication experiment with 26 or 30 questions with known answers. The accuracy of the experiments with questionnaires was 94%, demonstrating that our paradigm could constitute an auxiliary AAC system for some LIS patients

    A Cobalt Tandem Catalyst Supported on a Compressible Microporous Polymer Monolith

    No full text
    A compressible microporous polymer monolith (MPM) was prepared by performing the Sonogashira–Hagihara reaction between 1,4-diiodobenzene and 1,3,5-triethynylbenzene in a gel state without stirring. MPM was functionalized via the click reaction with 1,3,5-tris­(azidomethyl)-2,4,6-trimethylbenzene and 2,6-diethynylpyridine. MPM showed superhydrophobicity but became hydrophilic after the click reaction. The functionalized MPM (F-MPM) had polar triazole groups generated by the click reaction, which were used as coordination sites for Co­(II) ions. Cobalt nanoparticles were loaded to F-MPM through in situ reduction of coordinated Co­(II) ions to produce a monolithic Co heterogeneous catalyst (Co-MPM). The microscopic study showed that MPM, F-MPM, and Co-MPM consisted of fiber bundles, together with spherical particles on the micrometer scale. Co-MPM was used for tandem catalysis. Co-MPM promoted the reaction of dehydrogenation of ammonia borane and hydrogenation of nitro compounds in one pot to give amine products. The reactions with the compression and release process were much faster compared with the reactions performed under the stirring conditions, suggesting that the repeated compression and release facilitated interfacial contact between the reactants and active sites in Co-MPM

    Beneficial Effect of Betulinic Acid on Hyperglycemia via Suppression of Hepatic Glucose Production

    No full text
    The inhibitory effect of betulinic acid (BA) on hepatic glucose production was examined in HepG2 cells and high fat diet (HFD)-fed ICR mice. BA significantly inhibited the hepatic glucose production (HGP) and gene expression levels of PGC-1α, PEPCK, and G6Pase. BA activated AMPK and suppressed the expression level of phosphorylated CREB. These effects were all abolished in the presence of compound C (an AMPK inhibitor). Moreover, inhibition of AMPK by overexpression of dominant negative AMPK prevented BA from suppression of HGP, indicating that the inhibitory effect of BA on HGP is AMPK-dependent. In addition, BA markedly phosphorylated CAMKK, and phosphorylation of AMPK and ACC, and suppression of HGP were all reversed in the presence of STO-609 (a CAMKK inhibitor), suggesting that CAMKK is an upstream kinase for AMPK. In an animal study, HFD-fed ICR mice were orally administered with 5 or 10 mg of BA per kg (B5 and B10) for three weeks. Plasma glucose, triglyceride, and the insulin resistance index of the B10 group were decreased by 34%, 59%, and 38%, respectively. In a pyruvate tolerance test, pyruvate-induced glucose excursion was decreased by 27% when mice were pretreated with 10 mg/kg of BA. In summary, BA effectively ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis via modulating the CAMKK-AMPK-CREB signaling pathway
    corecore