3 research outputs found

    Strong Power Transfer Between Photonic Bandgaps Of Hybrid Photonic Crystal Fibers

    No full text
    This work reports the strong nonlinear power transfer between two adjacent photonic bandgaps of hybrid photonic crystal fibers. The nonlinear phenomenon originates from the generation of a resonant radiation in a particular bandgap, which is ensured by launching a femtosecond pulse near the zero-dispersion wavelength of a lower-order adjacent bandgap, where its correspondent soliton is formed. A theoretical description based on fiber dispersion properties and phase-matching conditions is presented to contribute to the interpretation and understanding of the highly efficient energy transference. Furthermore, various experimental results are reported, including the resonant radiation that peaks at 8.5 dB above that of the initial pulse, which represents a significant enhancement in the nonlinear efficiency compared to previous published works in the literature.223641Arismar Cerqueira, S., Jr., Recent progress and novel applications of photonic crystal fibers (2010) Rep. Prog. Phys., 73, p. 024401Arismar Cerqueira, S., Jr., Luan, F., Cordeiro, C.M.B., George, A.K., Knight, J.C., Hybrid photonic crystal fiber (2006) Opt. Express, 14, pp. 926-931Xiao, L., Jin, W., Demokan, M.S., Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: Hybrid PCFs (2007) Opt. Express, 15, pp. 15637-15647Ould-Agha, Y., Bétourné, A., Vanvincq, O., Bouwmans, G., Quiquempois, Y., Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber (2012) Opt. Express, 20, pp. 6746-6760Arismar Cerqueira, S., Jr., Lona, D.G., De Oliveira, I., Hernandez-Figueroa, H.E., Fragnito, H.L., Broadband single-polarization guidance in hybrid photonic crystal fibers (2011) Opt. Lett., 36, pp. 133-135Alkeskjold, T.T., Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity (2009) Opt. Express, 17, pp. 16394-16405Pang, M., Xiao, L.M., Jin, W., Arismar Cerqueira, S., Jr., Birefringence of hybrid PCF and its sensitivity to strain and temperature (2012) J. Lightwave Technol., 30, pp. 1422-1432Bétourné, A., Kudlinski, A., Bouwmans, G., Vanvincq, O., Mussot, A., Quiquempois, Y., Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers (2009) Opt. Lett., 34, pp. 3083-3085Arismar Cerqueira, S., Jr., Cordeiro, C.M.B., Biancalana, F., Roberts, P.J., Hernandez-Figueroa, H.E., Brito Cruz, C.H., Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber (2008) Opt. Lett., 33, pp. 2080-2082Pureur, V., Dudley, J.M., Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers (2010) Opt. Lett., 35, pp. 2813-2815Austin, D.R., Martijn De Sterke, C., Eggleton, B.J., Brown, T.G., Dispersive wave blue-shift in supercontinuum generation (2006) Opt. Express, 14, pp. 11997-12007Arismar Cerqueira, S., Jr., Nobrega, K.Z., Hernandez-Figueroa, H.E., Di Pasquale, F., PCFDT: An accurate and friendly photonic crystal fiber design tool (2008) Optik, 119, pp. 723-732Haakestad, M., Skaar, J., Causality and Kramers-Kronig relations for waveguides (2005) Opt. Express, 13, pp. 9922-9934Kodama, Y., Hasegawa, A., Nonlinear pulse propagation in a monomode dielectric guide (1987) J. Quant. Electron., 23 (5), pp. 510-524Agrawal, G., (2013) Nonlinear Fiber Optics, , Academic Press (Chapter 12)Fuerbach, A., Steinvurzel, P., Bolger, J., Eggleton, B., Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers (2005) Opt. Express, 13, pp. 2977-2987Husakou, A.V., Herrmann, J., Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers (2001) Phys. Rev. Lett., 87, p. 203901Akhmediev, N., Karlsson, M., Cherenkov radiation emitted by solitons in optical fibers (1995) Phys. Rev. A, 51, pp. 2602-2607Arismar Cerqueira, S., Jr., Do Nascimento, Jr.A.R., Franco, M.A.R., De Oliveira, I., Serrão, V.A., Fragnito, H.L., Numerical and experimental analysis of polarization properties from hybrid PCFs across different photonic bandgaps (2012) Opt. Fiber Technol., 18, pp. 462-469Arismar Cerqueira, S., Do Nascimento, Jr.A.R., Gouveia, M.A., Cordeiro, C.M.B., Efficient energy transfer between photonic bandgaps (2012) Lasers and Electro-Optics (CLEO), , Conference on, May 201

    Polarization Analysis Across Different Photonic Bandgaps Of Hybrid Photonic Crystal Fibers

    No full text
    We present an experimental polarization analysis across different photonic bandgaps of three Hybrid Photonic Crystal Fibers. Polarization dependent loss of at least 17.5 dB has been observed in the first three bandgaps around 1500 nm. © 2011 AOS.618620Arismar Cerqueira Jr., S., Recent Progress and Novel Applications of Photonic Crystal Fibers (2010) Rep. on Progress in Physics, 73, p. 024401Arismar Cerqueira Jr., S., Hybrid Photonic Crystal Fiber (2006) Opt. Express, 14, pp. 926-931Arismar Cerqueira Jr., S., Broadband single-polarization guidance in hybrid photonic crystal fibers (2011) Opt. Letters, 36, pp. 133-135Arismar Cerqueira Jr., S., Nonlinear Interaction between two different photonic bandgaps of a hybrid photonic crystal fiber (2008) Opt.Letters, 33, pp. 2080-2082Ortigosa-Blanch, A., Highly Birefringent Photonic Crystal Fiber (2000) Opt. Letters, 25, pp. 1325-1327Folkenberg, J.R., Broadband single-polarization photonic crystal fiber (2005) Opt. Letters, 30, pp. 1446-1448Goto, R., Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts (2009) Opt.Express, 34, pp. 3119-3121Sun, J., Chan, C.C., Hybrid guiding in liquid-crystal photonic crystal fibers (2007) JOSA B, 24, pp. 2640-2646Schreiber, T., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity (2005) Opt. Express, 13, pp. 7621-7630Birks, T.A., Bending loss in all-solid bandgap fibers (2006) Opt. Express, 14, pp. 5688-569
    corecore