45 research outputs found

    Impaired precursor B cell differentiation in Bruton's tyrosine kinase-deficient mice

    Get PDF
    Bruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells failed to efficiently modulate the expression of CD43, surrogate L chain, CD2, and CD25. In an analysis of the kinetics of pre-B cell differentiation in vivo, Btk-deficient cells manifested a specific developmental delay within the small pre-B cell compartment of about 3 h, when compared with wild-type cells. Likewise, in in vitro bone marrow cultures, Btk-deficient large cycling pre-B cells showed increased IL-7 mediated expansion and reduced developmental progression into noncycling CD2(+)CD25(+) surrogate L chain-negative small pre-B cells and subsequently into Ig-positive B cells. Furthermore, the absence of Btk resulted in increased proliferative responses to IL-7 in recombination-activating gene-1-deficient pro-B cells. These findings identify a novel role for Btk in the regulation of the differentiation stage-specific modulation of IL-7 responsiveness in pro-B and pre-B cells. Moreover, our results show that Btk is critical for an efficient transit through the small pre-B cell compartment, thereby regulating cell surface phenotype changes during the developmental progression of cytoplasmic mu H chain expressing pre-B cells into immature IgM(+) B cells

    Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity

    Get PDF
    The Tec family member Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase that transduces signals from the pre-B and B cell receptor (BCR). Btk is involved in pre-B cell maturation by regulating IL-7 responsiveness, cell surface phenotype changes, and the activation of lambda L chain gene rearrangements. In mature B cells, Btk is essential for BCR-mediated proliferation and survival. Upon BCR stimulation, Btk is transphosphorylated at position Y551, which promotes its catalytic activity and subsequently results in autophosphorylation at position Y223 in the Src homology 3 domain. To address the significance of Y223 autophosphorylation and the requirement of enzymatic activity for Btk function in vivo, we generated transgenic mice that express the autophosphorylation site mutant Y223F and the kinase-inactive mutant K430R, respectively. We found that Y223 autophosphorylation was not required for the regulation of IL-7 responsiveness and cell surface phenotype changes in differentiating pre-B cells, or for peripheral B cell differentiation. However, expression of the Y223F-Btk transgene could not fully rescue the reduction of lambda L chain usage in Btk-deficient mice. In contrast, transgenic expression of kinase-inactive K430R-Btk completely reconstituted lambda usage in Btk-deficient mice, but the defective modulation of pre-B cell surface markers, peripheral B cell survival, and BCR-mediated NF-kappaB induction were partially corrected. From these findings, we conclude that: 1) autophosphorylation at position Y223 is not essential for Btk function in vivo, except for regulation of lambda L chain usage, and 2) during B cell development, Btk partially acts as an adapter molecule, independent of its catalytic activity

    Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity

    Get PDF
    During B-cell development in the mouse, Bruton tyrosine kinase (Btk) and the adaptor protein SLP-65 (Src homology 2 [SH2] domain-containing leukocyte protein of 65 kDa) limit the expansion and promote the differentiation of pre-B cells. Btk is thought to mainly function by phosphorylating phospholipase Cgamma2, which is brought into close proximity of Btk by SLP-65. However, this model was recently challenged by the identification of a role for Btk as a tumor suppressor in the absence of SLP-65 and by the finding that Btk function is partially independent of its kinase activity. To investigate if enzymatic activity is critical for the tumor suppressor function of Btk, we crossed transgenic mice expressing the kinase-inactive K430R-Btk mutant onto a Btk/SLP-65 double-deficient background. We found that K430R-Btk expression rescued the severe developmental arrest at the pre-B-cell stage in Btk/SLP-65 double-deficient mice. Moreover, K430R-Btk co

    Bruton's Tyrosine Kinase Cooperates with the B Cell Linker Protein SLP-65 as a Tumor Suppressor in Pre-B Cells

    Get PDF
    Expression of the pre-B cell receptor (pre-BCR) leads to activation of the adaptor molecule SLP-65 and the cytoplasmic kinase Btk. Mice deficient for one of these signaling proteins have an incomplete block in B cell development at the stage of large cycling pre-BCR+CD43+ pre-B cells. Our recent findings of defective SLP-65 expression in ∼50% of childhood pre-B acute lymphoblastic leukemias and spontaneous pre-B cell lymphoma development in SLP-65−/− mice demonstrate that SLP-65 acts as a tumor suppressor. To investigate cooperation between Btk and SLP-65, we characterized the pre-B cell compartment in single and double mutant mice, and found that the two proteins have a synergistic role in the developmental progression of large cycling into small resting pre-B cells. We show that Btk/SLP-65 double mutant mice have a dramatically increased pre-B cell tumor incidence (∼75% at 16 wk of age), as compared with SLP-65 single deficient mice (<10%). These findings demonstrate that Btk cooperates with SLP-65 as a tumor suppressor in pre-B cells. Furthermore, transgenic low-level expression of a constitutive active form of Btk, the E41K-Y223F mutant, prevented tumor formation in Btk/SLP-65 double mutant mice, indicating that constitutive active Btk can substitute for SLP-65 as a tumor suppressor

    Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice

    Get PDF
    The zinc finger transcription factor GATA-3 is of critical importance for early T cell development and commitment of Th2 cells. To study the role of GATA-3 in early T cell development, we analyzed and modified GATA-3 expression in vivo. In mice carrying a targeted insertion of a lacZ reporter on one allele, we found that GATA-3 transcription in CD4(+)CD8(+) double-positive thymocytes correlated with the onset of positive selection events, i.e., TCRalphabeta up-regulation and CD69 expression. LacZ expression remained high ( approximately 80% of cells) during maturation of CD4 single-positive (SP) cells in the thymus, but in developing CD8 SP cells the fraction of lacZ-expressing cells decreased to <20%. We modified this pattern by enforced GATA-3 expression driven by the CD2 locus control region, which provides transcription of GATA-3 throughout T cell development. In two independent CD2-GATA3-transgenic lines, approximately 50% of the mice developed thymic lymphoblastoid tumors that were CD4(+)CD8(+/low) and mostly CD3(+). In tumor-free CD2-GATA3-transgenic mice, the total numbers of CD8 SP cells in the thymus were within normal ranges, but their maturation was hampered, as indicated by increased apoptosis of CD8 SP cells and a selective deficiency of mature CD69(low)HSA(low) CD8 SP cells. In the spleen and lymph nodes, the numbers of CD8(+) T cells were significantly reduced. These findings indicate that GATA-3 supports development of the CD4 lineage and inhibits maturation of CD8 SP cells in the thymus
    corecore