9 research outputs found

    Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning

    Full text link
    Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedback. Users' feedback can be positive and negative and both types of feedback have great potentials to boost recommendations. However, the number of negative feedback is much larger than that of positive one; thus incorporating them simultaneously is challenging since positive feedback could be buried by negative one. In this paper, we develop a novel approach to incorporate them into the proposed deep recommender system (DEERS) framework. The experimental results based on real-world e-commerce data demonstrate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of both positive and negative feedback in recommendations.Comment: arXiv admin note: substantial text overlap with arXiv:1801.0020

    Collaborative Group Learning

    Full text link
    Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima. However, previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises. In this paper, we propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization. Intuitively, similar to the human group study mechanism, we induce students to learn and exchange different parts of course knowledge as collaborative groups. First, each student is established by randomly routing on a modular neural network, which facilitates flexible knowledge communication between students due to random levels of representation sharing and branching. Second, to resist the student homogenization, students first compose diverse feature sets by exploiting the inductive bias from sub-sets of training data, and then aggregate and distill different complementary knowledge by imitating a random sub-group of students at each time step. Overall, the above mechanisms are beneficial for maximizing the student population to further improve the model generalization without sacrificing computational efficiency. Empirical evaluations on both image and text tasks indicate that our method significantly outperforms various state-of-the-art collaborative approaches whilst enhancing computational efficiency.Comment: Accepted by AAAI 2021; Camera ready versio

    Automatic Product Copywriting for E-commerce

    No full text
    Product copywriting is a critical component of e-commerce recommendation platforms. It aims to attract users' interest and improve user experience by highlighting product characteristics with textual descriptions. In this paper, we report our experience deploying the proposed Automatic Product Copywriting Generation (APCG) system into the JD.com e-commerce product recommendation platform. It consists of two main components: 1) natural language generation, which is built from a transformer-pointer network and a pre-trained sequence-to-sequence model based on millions of training data from our in-house platform; and 2) copywriting quality control, which is based on both automatic evaluation and human screening. For selected domains, the models are trained and updated daily with the updated training data. In addition, the model is also used as a real-time writing assistant tool on our live broadcast platform. The APCG system has been deployed in JD.com since Feb 2021. By Sep 2021, it has generated 2.53 million product descriptions, and improved the overall averaged click-through rate (CTR) and the Conversion Rate (CVR) by 4.22% and 3.61%, compared to baselines, respectively on a year-on-year basis. The accumulated Gross Merchandise Volume (GMV) made by our system is improved by 213.42%, compared to the number in Feb 2021

    Intelligent Online Selling Point Extraction for E-commerce Recommendation

    No full text
    In the past decade, automatic product description generation for e-commerce have witnessed significant advancement. As the services provided by e-commerce platforms become diverse, it is necessary to dynamically adapt the patterns of descriptions generated. The selling point of products is an important type of product description for which the length should be as short as possible while still conveying key information. In addition, this kind of product description should be eye-catching to the readers. Currently, product selling points are normally written by human experts. Thus, the creation and maintenance of these contents incur high costs. These costs can be significantly reduced if product selling points can be automatically generated by machines. In this paper, we report our experience developing and deploying the Intelligent Online Selling Point Extraction (IOSPE) system to serve the recommendation system in the JD.com e-commerce platform. Since July 2020, IOSPE has become a core service for 62 key categories of products (covering more than 4 million products). So far, it has generated more than 1.1 billion selling points, thereby significantly scaling up the selling point creation operation and saving human labour. These IOSPE generated selling points have increased the click-through rate (CTR) by 1.89% and the average duration the customers spent on the products by more than 2.03% compared to the previous practice, which are significant improvements for such a large-scale e-commerce platform
    corecore