65 research outputs found

    Scrapping steel components for recycling—Isn’t that good enough? Seeking improvements in automotive component end-of-life

    Get PDF
    Life cycle management (LCM) suggests that companies take responsibility for the entire lifecycle of their products, either alone or together with other lifecycle actors. This paper examines the case of an automotive component manufacturer that has committed to LCM and wants to investigate product end of life (EoL) management despite the fact that it is a couple stages removed from the vehicle end-user and EoL vehicle (ELV) handling. Material flow analysis (MFA) is used to estimate and create Sankey diagrams of the downstream flows of two components made of low-alloyed steel, one wheel component and one gearbox component. Product sales data was analyzed and composition and design trends were considered to add perspectives beyond those yielded by looking at the bulk material flow. The components of interest are not remanufactured themselves but the gearboxes in which they sit are. Remanufacturers of gearboxes visited indicated a great variability in how much they replace the components of interest suggesting an opportunity for the case company to support remanufacturers in quality control and extension of use life. In regards to component EoL, many components are sent through shredding as part of ELV treatment but a comparable amount is liberated from vehicles and scrapped during vehicle maintenance. Regardless, the components end up in mixed scrap and alloying elements are rarely functionally recycled. According to commodity experts, an alternative to handle such components separately for functional recycling is practically limited. Component quantities and their values do not appear to justify additional administration and transport that would be require to sort, store and collect them. Accordingly, when considering societal interest to increase functional recycling and to activate the circular economy, it seems warranted to investigate what a recycling program for similar material grades could yield and subsequently, to consider what collaborative efforts or policy intervention would be relevant

    Circular products and business models and environmental impact reductions: current knowledge and knowledge gaps

    Get PDF
    The circular economy is billed as a solution to increase economic growth while reducing environmental impact. It is argued that retaining the value of products, components and materials by fostering the “inner loops”, such as reuse, refurbishment and remanufacturing, increases the resource-efficiency. However, published environmental assessments estimating the actual impact of these so-called circular outcomes are inconclusive. This paper presents the results of a systematic literature review of previous environmental assessments on circular products and circular business models, focusing on the tighter technical loops including reuse, refurbishment, and remanufacturing. Mapping reveals factors that influence the environmental impact of circular products and other aspects that should be incorporated in environmental assessments. Even though 239 papers were identified that discuss the environmental impact of circular products and/or circular business models, the far majority only considers a traditional product in a traditional sales model that is remanufactured and compares the impacts of remanufacturing with manufacturing new products. While it is important to quantify the impacts of remanufacturing, it is remarkable that product design strategies for circular economy (e.g. design for remanufacturing, upgradability, modularity) and product-service systems or other types of circular business models are usually not considered in the LCA studies. A lack of studies of products with so-called circular designs that are utilized within circular business models is apparent. In addition, many assessments are static analyses and limited consideration is given to future increases in the share of renewable energy. One can thus question how well the available environmental assessments quantify actual circular products/offerings and the environmental performance gains they could provide in a circular economy. The results show that there is an urgent need for more LCAs done in a way that better captures the potential benefits and deficiencies of circular products. Only then will it be possible to make robust claims about the environmental sustainability of circular products and circular business models and finally circular economy in total

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    GETTING MORE OUT OF THE AFTERLIFE

    No full text
    Material intensity related to product consumption has become part of societal discourse and reducing it has become a priority of some industrial actors. Focusing on product end-of-life (EoL) is one approach that many companies and research entities have taken to identify and enact material intensity reductions. Such efforts have provided evidence of environmental and economic benefits, success stories for reuse and remanufacturing, and strategies for success. The project presented here explores ways in which a large component manufacturer may improve the EoL management of its products. The project was conducted in the format of a case study of a multi-national component manufacturer (the case company) that has committed to the principles of life cycle management (LCM). Although the company remanufactures some of the products sold and knows that its products are generally recycled, it wanted to know more about the downstream material flows and related loss of material, function and value and find improvement potentials. Two contrasting business areas were chosen as study subjects – one Industrial and one Automotive. Eight hypothetical EoL improvement opportunities were identified from literature and evaluated during the course of the project. Using material flow analysis (MFA) and analyses of company sales data from the two areas, snapshots of the company’s downstream (mostly) low-alloyed steel flows were taken. The circumstances of product EoL were evaluated and product liberation from parent products was of particular focus. In addition, remanufacturing potential was evaluated based on existing company preferences. The results from the two cases give indications of what types of expected and unexpected opportunities might be available to a component manufacturer. Results from the Industrial case indicate that that the potential to remanufacture the company’s products is substantial. It appears that many products that meet the company’s remanufacturing size and condition preferences are not currently remanufactured. If all products identified for the case were in proper condition to be remanufactured and if they were remanufactured one time, the potential would represent a 30% reduction of material use for the business area studied. The Automotive case shows that design trends might hinder future repair and recycling of some automotive products. In addition, although the studied products are not remanufactured themselves, the company may have an opportunity to contribute to the quality control of parent product remanufacturing. Many of the products from both cases are liberated at EoL and there appears to be an opportunity to sort and recycle these low-alloyed products to realize more “functional” recycling. However, whether the volumes of the company’s EoL products are sufficient to justify such dedicated material recycling requires additional investigation. These results along with societal interest to increase functional recycling imply the need to further investigate what a recycling program for specific material grades could yield

    Scrap happens, but does it have to? On the potential of increasing machine component reuse

    Get PDF
    The vision of the “circular economy” provides some guidelines for society to strive towards. In the circular economy, material resources are used and reused and recycled better, if not endlessly. Products are to require less material and deliver more function. In industry, manufacturers of all types of products and parts have started to investigate how they and their products can fit in. \ua0The purpose of this study was to address the question – What can a component manufacturer do to improve the resource efficiency of its products through extending product lifetime and improving end-of-use management? To answer this question, the study focused on the key product of one component manufacturer, a bearing, a part that is used in many things mechanical. Mixed methods were utilized including material flow analyses to quantify downstream bearing material flows and interviews with customers of the component manufacturer to provide explanations about the fate of bearings, their obsolescence, and the possibility to remanufacture and reuse more of them and recycle them in a better way. \ua0Results of the study reveal that there are large opportunities for the component manufacturer to remanufacture more and that there are sizable environmental benefits to doing so. Most notably, bearings in industrial use oftentimes become scrap not because they fail but because an end-user deems them to be untrustworthy. In these situations, remanufacturing offers a way to restore the bearings but often, end-users do not choose that option.\ua0 End-users make obsolescence and remanufacturing decisions with consideration to risks at the system-level and their ability to make a thorough assessment is limited by lack of time and information. These and other lessons learned from this study demonstrate the kind of low-hanging fruit that component manufacturers may have but indicate that picking it may require changes to the way they do business
    corecore