3,237 research outputs found

    Isovector Vibrations in Nuclear Matter at Finite Temperature

    Get PDF
    We consider the propagation and damping of isovector excitations in heated nuclear matter within the Landau Fermi-liquid theory. Results obtained for nuclear matter are applied to calculate the Giant Dipole Resonance (GDR) at finite temperature in heavy spherical nuclei within Steinwedel and Jensen model. The centroid energy of the GDR slightly decreases with increasing temperature and the width increases as T2T^2 for temperatures T<5T < 5 MeV in agreement with recent experimental data for GDR in 208^{208}Pb and 120^{120}Sn. The validity of the method for other Fermi fluids is finally suggested.Comment: gzipped LaTeX file with text: 19 pages, 26 blocks; 3 gzipped *.ps files with figures: 50 block

    Nuclear collective dynamics within Vlasov approach

    Full text link
    We discuss, in an investigation based on Vlasov equation, the properties of the isovector modes in nuclear matter and atomic nuclei in relation with the symmetry energy. We obtain numerically the dipole response and determine the strength function for various systems, including a chain of Sn isotopes. We consider for the symmetry energy three parametrizations with density providing similar values at saturation but which manifest very different slopes around this point. In this way we can explore how the slope affects the collective response of finite nuclear systems. We focus first on the dipole polarizability and show that while the model is able to describe the expected mass dependence, A^{5/3}, it also demonstrates that this quantity is sensitive to the slope parameter of the symmetry energy. Then, by considering the Sn isotopic chain, we investigate the emergence of a collective mode, the Pygmy Dipole Resonance (PDR), when the number of neutrons in excess increases. We show that the total energy-weighted sum rule exhausted by this mode has a linear dependence with the square of isospin I=(N-Z)/A, again sensitive to the slope of the symmetry energy with density. Therefore the polarization effects in the isovector density have to play an important role in the dynamics of PDR. These results provide additional hints in the investigations aiming to extract the properties of symmetry energy below saturation.Comment: 7 pages, 6 figure

    Dynamics of Phase Transitions in Asymmetric Nuclear Matter

    Get PDF
    We present several possibilities offered by the reaction dynamics of dissipative heavy ion collisions to study in detail the symmetry term of the nuclear equation of state, EOSEOS. In particular we discuss isospin effects on the nuclear liquid-gas phase transition, {\it Isospin Distillation}, and on collective flows. We stress the importance of a microscopic relativistic structure of the effective interaction in the isovector channel. The possibility of an {\it early} transition to deconfined matter in high isospin density regions is also suggested. We finally select {\it Eleven} observables, in different beam energy regions, that appear rather sensitive to the isovector part of the nuclear EOSEOS, in particular in more exclusive experiments.Comment: 8 pages, 7 figures, ISPUN02 Conference, Halong-Vietnam, Nov.20-25 2002, to appear in Nucl.Phys.A. Elsevier Proceedings Styl

    Collective Flows in a Transport Approach

    Full text link
    We introduce a transport approach at fixed shear viscosity to entropy ratio \etas to study the generation of collective flows in ultra-relativistic heavy-ion collisions. Transport theory supplies a covariant approach valid also at large \etas and at intermediate transverse momentum pTp_T, where deviations from equilibrium is no longer negligible. Such an approach shows that at RHIC energies a temperature dependent \etas enhances significantly the v4/v22v_4/v_2^2 respect to the case of constant \etas. Furthermore if NJL chiral dynamics is self-consistently implemented we show that it does not modify the relation between v2v_2 and \etas.Comment: 4 pages, 4 figures, Proceedings of Hot Quarks 2010, 21-26 June 2010 Las Londe Les Maures; to appear in Journal of Physics: Conference Serie

    Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes

    Get PDF
    Theoretical studies have shown that the issue of rupture modes has important implications for fault constitutive laws, stress conditions on faults, energy partition and heat generation during earthquakes, scaling laws, and spatiotemporal complexity of fault slip. Early theoretical models treated earthquakes as crack-like ruptures, but seismic inversions indicate that earthquake ruptures may propagate in a self-healing pulse-like mode. A number of explanations for the existence of slip pulses have been proposed and continue to be vigorously debated. This study presents experimental observations of spontaneous pulse-like ruptures in a homogeneous linear-elastic setting that mimics crustal earthquakes; reveals how different rupture modes are selected based on the level of fault prestress; demonstrates that both rupture modes can transition to supershear speeds; and advocates, based on comparison with theoretical studies, the importance of velocity-weakening friction for earthquake dynamics

    Friction and Roughness of a Melting Rock Surface

    Get PDF
    Under extreme conditions like those encountered during earthquake slip, frictional melt is likely to occur. It has been observed on ancient faults that the melt is mostly extruded toward local extensional jogs or lateral tension cracks. In the case of laboratory experiments with a rotary shear apparatus, melt is extruded from the sample borders. When this happens, a thin and irregular melt layer is formed whereby the normal load is still in part supported by contact asperities under an incipient yield condition (as in dry friction models), but also, in the interstices between asperities, by the pressure of the viscous fluid wetting the interface. In addition, roughness of the surface is dynamically reshaped by the melting process of an inhomogeneous material (polymineralic rock). In particular, we argue that the roughness of the melting surface decreases with melting rate and temperature gradient perpendicular to the fault. Taking into account the above conditions, we obtain an expression for the average melt layer thickness and viscous pressure that may be used in estimates of friction in the presence of melt. We argue that the ratio of melt thickness to roughness depends on sliding velocity; such a ratio may be used as a gauge of slip-rate during fossil earthquakes on faults bearing pseudotachylite (solidified melt). Finally, we derive an improved analytical solution for friction in the presence of melt including the effect of roughness evolution
    • …
    corecore