26 research outputs found

    Antibacterial and Sterilizing Effect of Benzylpenicillin in Tuberculosis.

    Get PDF
    The modern chemotherapy era started with Fleming's discovery of benzylpenicillin. He demonstrated that benzylpenicillin did not kill Mycobacterium tuberculosis In this study, we found that >64 mg/liter of static benzylpenicillin concentrations killed 1.16 to 1.43 log10 CFU/ml below starting inoculum of extracellular and intracellular M. tuberculosis over 7 days. When we added the ?-lactamase inhibitor avibactam, benzylpenicillin maximal kill (Emax) of extracellular log-phase-growth M. tuberculosis was 6.80 ± 0.45 log10 CFU/ml at a 50% effective concentration (EC50) of 15.11 ± 2.31 mg/liter, while for intracellular M. tuberculosis it was 2.42 ± 0.14 log10 CFU/ml at an EC50 of 6.70 ± 0.56 mg/liter. The median penicillin (plus avibactam) MIC against South African clinical M. tuberculosis strains (80% either multidrug or extensively drug resistant) was 2 mg/liter. We mimicked human-like benzylpenicillin and avibactam concentration-time profiles in the hollow-fiber model of tuberculosis (HFS-TB). The percent time above the MIC was linked to effect, with an optimal exposure of ?65%. At optimal exposure in the HFS-TB, the bactericidal activity in log-phase-growth M. tuberculosis was 1.44 log10 CFU/ml/day, while 3.28 log10 CFU/ml of intracellular M. tuberculosis was killed over 3 weeks. In an 8-week HFS-TB study of nonreplicating persistent M. tuberculosis, penicillin-avibactam alone and the drug combination of isoniazid, rifampin, and pyrazinamide both killed >7.0 log10 CFU/ml. Monte Carlo simulations of 10,000 preterm infants with disseminated disease identified an optimal dose of 10,000 U/kg (of body weight)/h, while for pregnant women or nonpregnant adults with pulmonary tuberculosis the optimal dose was 25,000 U/kg/h, by continuous intravenous infusion. Penicillin-avibactam should be examined for effect in pregnant women and infants with drug-resistant tuberculosis, to replace injectable ototoxic and teratogenic second-line drugs

    Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis.

    Get PDF
    There are currently many patients with multidrug-resistant and extensively drug-resistant tuberculosis. Ongoing transmission of the highly drug-resistant strains and high mortality despite treatment remain problematic. The current strategy of drug discovery and development takes up to a decade to bring a new drug to clinical use. We embarked on a strategy to screen all antibiotics in current use and examined them for use in tuberculosis. We found that ceftazidime-avibactam, which is already used in the clinic for multidrug-resistant Gram-negative bacillary infections, markedly killed rapidly growing, intracellular, and semidormant Mycobacterium tuberculosis in the hollow fiber system model. Moreover, multidrug-resistant and extensively drug-resistant clinical isolates demonstrated good ceftazidime-avibactam susceptibility profiles and were inhibited by clinically achievable concentrations. Resistance arose because of mutations in the transpeptidase domain of the penicillin-binding protein PonA1, suggesting that the drug kills M. tuberculosis bacilli via interference with cell wall remodeling. We identified concentrations (exposure targets) for optimal effect in tuberculosis, which we used with susceptibility results in computer-aided clinical trial simulations to identify doses for immediate clinical use as salvage therapy for adults and young children. Moreover, this work provides a roadmap for efficient and timely evaluation of antibiotics and optimization of clinically relevant dosing regimens

    Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests

    Get PDF
    Children with tuberculosis are treated with drug regimens copied from adults despite significant differences in antibiotic pharmacokinetics, pathology, and the microbial burden between childhood and adult tuberculosis. We sought to develop a new and effective oral treatment regimen specific to children of different ages. We investigated and validated the concept that target drug concentrations associated with therapy failure and death in children are different from those of adults. On that basis, we proposed a 4-step program to rapidly develop treatment regimens for children. First, target drug concentrations for optimal efficacy are derived from preclinical models of disseminated tuberculosis that recapitulate pediatric pharmacokinetics, starting with monotherapy. Second, 2-drug combinations were examined for zones of synergy, antagonism, and additivity based on a whole exposure–response surface. Exposures associated with additivity or synergy were then combined and the regimen was compared to standard therapy. Third, several exposures of the third drug were added, and a 3-drug regimen was identified based on kill slopes in comparison to standard therapy. Fourth, computer-aided clinical trial simulations are used to identify clinical doses that achieve these kill rates in children in different age groups. The proposed program led to the development of a 3-drug combination regimen for children from scratch, independent of adult regimens, in <2 years. The regimens and doses can be tested in animal models and in clinical trials

    A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies

    Get PDF
    AbstractTreatment of disseminated tuberculosis in children≤6years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children≤6years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity

    Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model

    No full text
    Objectives: To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration–time curve (AUC0–24) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin. Methods: We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway. Results: Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log10 CFU/mL Mtb. The EC50 was calculated as AUC0–24/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log10 CFU/mL kill was achieved by AUC0–24/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase. Conclusion: Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb
    corecore