75 research outputs found

    Geoscientific mapping of Vesta by the Dawn mission

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thus revealing the geologic history of Vesta

    Mapping Vesta: First Results from Dawn’s Survey Orbit

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution.Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater sizefrequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase – the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of ~3000 km with a beta angle of 10°-15°

    Regional and Local Temperature Maps of Dwarf Planet Ceres from Dawn/VIR

    Get PDF
    Since the beginning of 2015, the Visible InfraRed (VIR) mapping spectrometer onboard the NASA Dawn mission has obtained hyperspectral images of Ceres, with improving spatial resolution. VIR operates in the overall spectral range 0.25-5.1 μm, with the main goal of inferring the surface composition of the target in its uppermost layer, as thick as tens of microns. Taking advantage of the wavelength range longward of 3 μm, VIR can be used as a thermal mapper, i.e. as a tool to derive thermal images and spatially-resolved temperature maps. To do this, the VIR team uses a Bayesian approach to nonlinear inversion that was extensively applied to the Vesta dataset earlier. Already in February 2015, VIR had the chance to acquire data with a spatial resolution of ~11 km/px. Those temperature images revealed that a spot of high-albedo (bright) material, highlighted by the Hubble Space Telescope (HST) earlier and recently associated with the crater Haulani, was cooler than sorrounding regions seen under similar solar illumination, whereas the brightest spots on Ceres, in the crater Occator, did not display any thermal contrast. The following Survey phase yielded hyperspectral coverage of Ceres at ~1.3 km/px, and the High Altitude Mapping Orbit (HAMO) phase starting in mid-August 2015 is expected to provide VIR data with a resolution of ~0.4 km/px. These datasets allow derivation of regional and local temperature maps as well as the study of thermal anomalies at those spatial scales. Due to the low overall thermal inertia of Ceres, the surface temperature is essentially dominated by the instantaneous value of the solar incidence angle. Small values of this angle result in high surface temperatures, and, unlike Vesta, the low obliquity of Ceres (~4°) does not result in observable seasonal effects for a given location on the surface. However, different responses to insolation as observed at the local scale may be indicative of differences in density/porosity and thermal conductivity, which is key to constrain thermo-physical modeling

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore