2,017 research outputs found
Nano-displacement measurements using spatially multimode squeezed light
We demonstrate the possibility of surpassing the quantum noise limit for
simultaneous multi-axis spatial displacement measurements that have zero mean
values. The requisite resources for these measurements are squeezed light beams
with exotic transverse mode profiles. We show that, in principle, lossless
combination of these modes can be achieved using the non-degenerate Gouy phase
shift of optical resonators. When the combined squeezed beams are measured with
quadrant detectors, we experimentally demonstrate a simultaneous reduction in
the transverse x- and y- displacement fluctuations of 2.2 dB and 3.1 dB below
the quantum noise limit.Comment: 21 pages, 9 figures, submitted to "Special Issue on Fluctuations &
Noise in Photonics & Quantum Optics" of J. Opt.
DFR Perturbative Quantum Field theory on Quantum Space Time, and Wick Reduction
We discuss the perturbative approach a` la Dyson to a quantum field theory
with nonlocal self-interaction :phi*...*phi:, according to Doplicher,
Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction
of non locally time--ordered products of Wick monomials can be performed as
usual, and we discuss a very simple Dyson diagram.Comment: 15 pages, pdf has active hyperlinks. To appear in the proceedings of
the conference on "Rigorous quantum Field Theory", held at Saclay on July
19-21, 2004, on the occasion of Jacques Bros' 70th birthda
Optimum Small Optical Beam Displacement Measurement
We derive the quantum noise limit for the optical beam displacement of a
TEM00 mode. Using a multimodal analysis, we show that the conventional split
detection scheme for measuring beam displacement is non-optimal with 80%
efficiency. We propose a new displacement measurement scheme that is optimal
for small beam displacement. This scheme utilises a homodyne detection setup
that has a TEM10 mode local oscillator. We show that although the quantum noise
limit to displacement measurement can be surpassed using squeezed light in
appropriate spatial modes for both schemes, the TEM10 homodyning scheme
out-performs split detection for all values of squeezing.Comment: 13 pages, 7 figure
Characterization of Turing diffusion-driven instability on evolving domains
In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis
Synthesis optimization of carbon-supported ZrO2 nanoparticles from different organometallic precursors
Abstract We report here the synthesis of carbon-supported ZrO2 nanoparticles from zirconium oxyphthalocyanine (ZrOPc) and acetylacetonate [Zr(acac)4]. Using thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), we could investigate the thermal decomposition behavior of the chosen precursors. According to those results, we chose the heat treatment temperatures (T HT) using partial oxidizing (PO) and reducing (RED) atmosphere. By X-ray diffraction we detected structure and size of the nanoparticles; the size was further confirmed by transmission electron microscopy. ZrO2 formation happens at lower temperature with Zr(acac)4 than with ZrOPc, due to the lower thermal stability and a higher oxygen amount in Zr(acac)4. Using ZrOPc at T HT ≥900 °C, PO conditions facilitate the crystallite growth and formation of distinct tetragonal ZrO2, while with Zr(acac)4 a distinct tetragonal ZrO2 phase is observed already at T HT ≥750 °C in both RED and PO conditions. Tuning of ZrO2 nanocrystallite size from 5 to 9 nm by varying the precursor loading is also demonstrated. The chemical state of zirconium was analyzed by X-ray photoelectron spectroscopy, which confirms ZrO2 formation from different synthesis routes
Perturbation theory of the space-time non-commutative real scalar field theories
The perturbative framework of the space-time non-commutative real scalar
field theory is formulated, based on the unitary S-matrix. Unitarity of the
S-matrix is explicitly checked order by order using the Heisenberg picture of
Lagrangian formalism of the second quantized operators, with the emphasis of
the so-called minimal realization of the time-ordering step function and of the
importance of the -time ordering. The Feynman rule is established and is
presented using scalar field theory. It is shown that the divergence
structure of space-time non-commutative theory is the same as the one of
space-space non-commutative theory, while there is no UV-IR mixing problem in
this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference
- …