1,395 research outputs found

    Nonorthogonal decoy-state Quantum Key Distribution

    Full text link
    In practical quantum key distribution (QKD), weak coherent states as the photon sources have a limit in secure key rate and transmission distance because of the existence of multiphoton pulses and heavy loss in transmission line. Decoy states method and nonorthogonal encoding protocol are two important weapons to combat these effects. Here, we combine these two methods and propose a efficient method that can substantially improve the performance of QKD. We find a 79 km increase in transmission distance over the prior record using decoy states method.Comment: 4 pages, 1 figure; Revtex4, submitted to PR

    Transcriptome Profiling of \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e Mutants Lacking C2H2 Zinc Finger Proteins

    Get PDF
    BackgroundThe budding yeast Saccharomyces cerevisiae is a eukaryotic organism with extensive genetic redundancy. Large-scale gene deletion analysis has shown that over 80% of the ~6200 predicted genes are nonessential and that the functions of 30% of all ORFs remain unclassified, implying that yeast cells can tolerate deletion of a substantial number of individual genes. For example, a class of zinc finger proteins containing C2H2 zinc fingers in tandem arrays of two or three is predicted to be transcription factors; however, seven of the thirty-one predicted genes of this class are nonessential, and their functions are poorly understood. In this study we completed a transcriptomic profiling of three mutants lacking C2H2 zinc finger proteins, ypr013cΔ, ypr015cΔ and ypr013cΔypr015cΔ. ResultsGene expression patterns were remarkably different between wild type and the mutants. The results indicate altered expression of 79 genes in ypr013 cΔ, 185 genes in ypr015 cΔ and 426 genes in the double mutant when compared with that of the wild type strain. More than 80% of the alterations in the double mutants were not observed in either one of the single deletion mutants. Functional categorization based on Munich Information Center for Protein Sequences (MIPS) revealed up-regulation of genes related to transcription and down-regulation of genes involving cell rescue and defense, suggesting a decreased response to stress conditions. Genes related to cell cycle and DNA processing whose expression was affected by single or double deletions were also identified. ConclusionOur results suggest that microarray analysis can define the biological roles of zinc finger proteins with unknown functions and identify target genes that are regulated by these putative transcriptional factors. These findings also suggest that both YPR013C and YPR015C have biological processes in common, in addition to their own regulatory pathways

    Achievements and challenges in bioartificial kidney development

    Get PDF
    Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices

    Transcriptome profiling of Saccharomyces cerevisiae mutants lacking C2H2 zinc finger proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The budding yeast <it>Saccharomyces cerevisiae</it> is a eukaryotic organism with extensive genetic redundancy. Large-scale gene deletion analysis has shown that over 80% of the ~6200 predicted genes are nonessential and that the functions of 30% of all ORFs remain unclassified, implying that yeast cells can tolerate deletion of a substantial number of individual genes. For example, a class of zinc finger proteins containing C2H2 zinc fingers in tandem arrays of two or three is predicted to be transcription factors; however, seven of the thirty-one predicted genes of this class are nonessential, and their functions are poorly understood. In this study we completed a transcriptomic profiling of three mutants lacking C2H2 zinc finger proteins, <it>ypr013cΔ,</it><it>ypr015cΔ</it> and <it>ypr013cΔypr015cΔ</it>.</p> <p>Results</p> <p>Gene expression patterns were remarkably different between wild type and the mutants. The results indicate altered expression of 79 genes in<it> ypr013</it>cΔ, 185 genes in <it>ypr015</it>cΔ and 426 genes in the double mutant when compared with that of the wild type strain. More than 80% of the alterations in the double mutants were not observed in either one of the single deletion mutants. Functional categorization based on Munich Information Center for Protein Sequences (MIPS) revealed up-regulation of genes related to transcription and down-regulation of genes involving cell rescue and defense, suggesting a decreased response to stress conditions. Genes related to cell cycle and DNA processing whose expression was affected by single or double deletions were also identified.</p> <p>Conclusion</p> <p>Our results suggest that microarray analysis can define the biological roles of zinc finger proteins with unknown functions and identify target genes that are regulated by these putative transcriptional factors. These findings also suggest that both YPR013C and YPR015C have biological processes in common, in addition to their own regulatory pathways.</p

    High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca2+/PAD4 pathway to exacerbate acute pancreatitis

    Get PDF
    BackgroundExcessive neutrophil extracellular traps (NETs) is involved in the progression of acute pancreatitis (AP) but the mechanisms controlling NETs formation in AP are not fully understood. Therefore, our study sought to investigate the mechanism of the highly expressed P-selectin stimulating the formation of NETs in AP.MethodsNETs formation was detected by flow cytometry, immunofluorescence staining, and cf-DNA and MPO-DNA complexes were measured as biomarkers of NETs formation. Neutrophils treated with P-selectin and pharmacological inhibitors were examined by western blot, immunofluorescence staining and flow cytometry. Mouse model of AP was established by caerulein and the effect of inhibiting P-selectin by PSI-697 on the level of NETs and PAD4 in pancreatic tissue was observed. The severity of AP was evaluated by histopathological score and the detection of serum amylase and lipase.ResultsPatients with AP had elevated levels of NETs and P-selectin compared with healthy volunteers. Stimulation of P-selectin up-regulated the expression of PSGL-1, increased the phosphorylation of Syk, mediated intracellular calcium signal and led to the activation and expression of PAD4, which modulated NETs formation in neutrophils. Pretreament with PSI-697 blunted NETs formation and PAD4 expression in the pancreatic tissue, and ameliorated the severity of AP in mice.ConclusionTaken together, these results suggest that P-selectin induces NETs through PSGL-1 and its downstream Syk/Ca2+/PAD4 signaling pathway, and that targeting this pathway might be a promising strategy for the treatment of AP

    Management of Refractory/Aggressive Pituitary Adenomas Review of Current Treatment Options

    Get PDF
    Tumors of central nervous system (CNS) account for a small portion of tumors of human body, which includes tumors occurring in the parenchyma of brain and spinal cord as well as their coverings. This chapter covers some new development in some major brain tumors in both pediatric and adult populations, as well as some uncommon but diagnostic and management challenging tumors
    • …
    corecore