21 research outputs found

    Gibbs' paradox and black-hole entropy

    Full text link
    In statistical mechanics Gibbs' paradox is avoided if the particles of a gas are assumed to be indistinguishable. The resulting entropy then agrees with the empirically tested thermodynamic entropy up to a term proportional to the logarithm of the particle number. We discuss here how analogous situations arise in the statistical foundation of black-hole entropy. Depending on the underlying approach to quantum gravity, the fundamental objects to be counted have to be assumed indistinguishable or not in order to arrive at the Bekenstein--Hawking entropy. We also show that the logarithmic corrections to this entropy, including their signs, can be understood along the lines of standard statistical mechanics. We illustrate the general concepts within the area quantization model of Bekenstein and Mukhanov.Comment: Contribution to Mashhoon festschrift, 13 pages, 4 figure

    Isospin influences on particle emission and critical phenomenon in nuclear dissociation

    Full text link
    Features of particle emission and critical point behavior are investigated as functions of the isospin of disassembling sources and temperature at a moderate freeze-out density for medium-size Xe isotopes in the framework of isospin dependent lattice gas model. Multiplicities of emitted light particles, isotopic and isobaric ratios of light particles show the strong dependence on the isospin of the dissociation source, but double ratios of light isotope pairs and the critical temperature determined by the extreme values of some critical observables are insensitive to the isospin of the systems. Values of the power law parameter of cluster mass distribution, mean multiplicity of intermediate mass fragments (IMFIMF), information entropy (HH) and Campi's second moment (S2S_2) also show a minor dependence on the isospin of Xe isotopes at the critical point. In addition, the slopes of the average multiplicites of the neutrons (NnN_n), protons (NpN_p), charged particles (NCPN_{CP}), and IMFs (NimfN_{imf}), slopes of the largest fragment mass number (AmaxA_{max}), and the excitation energy per nucleon of the disassembling source (E/AE^*/A) to temperature are investigated as well as variances of the distributions of NnN_n, NpN_p, NCPN_{CP}, NIMFN_{IMF}, AmaxA_{max} and E/AE^*/A. It is found that they can be taken as additional judgements to the critical phenomena.Comment: 9 Pages, 8 figure

    Condensation of aluminum when used as a fuel additive in MHD power generation

    No full text
    corecore