272 research outputs found

    A status report on the analysis of the NOAA-9 SBUV/2 sweep mode solar irradiance data

    Get PDF
    Monitoring of the near ultraviolet (UV) solar irradiance is important because the solar UV radiation is the primary energy source in the upper atmosphere. The solar irradiance at wavelengths shortward of roughly 300 nm heats the stratosphere via photodissociation of ozone in the Hartley bands. Shortward of 242 nm the solar UV flux photodissociates O2, which is then available for ozone formation. Upper stratosphere ozone variations coincident with UV solar rotational modulation have been previously reported (Gille et al., 1984). Clearly, short and long term solar irradiance observations are necessary to separate solar-forced ozone variations from anthropogenic changes. The SBUV/2 instrument onboard the NOAA-9 spacecraft has made daily measurements of the solar spectral irradiance at approximately 0.15 nm intervals in the wavelength region 160-405 nm at 1 nm resolution since March 1985. These data are not needed to determine the terrestrial ozone overburden or altitude profile, and hence are not utilized in the NOAA Operational Ozone Product System (OOPS). Therefore, assisted by the ST System Corporation, NASA has developed a scientific software system to process the solar sweep mode data from the NOAA-9 instrument. This software will also be used to process the sweep mode solar irradiance data from the NOAA-11 and later SBUV/2 instruments. An overview of the software system and a brief discussion of analysis findings to date are provided. Several outstanding concerns/problems are also presented

    Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    Get PDF
    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models

    Genetics of seam fat in cattle

    Get PDF
    The document attached has been archived with permission from the World Congress on Genetics Applied to Livestock Production.As far as most consumers are concerned, a good steak is a steak with visibly desirable colour (doneness), a large portion of muscle and a small amount of fat, especially the seam fat located between the muscles. During the intensive growth to commercial slaughter weights in feedlots, there is a distinct change in the composition of the body with the amount of fat increasing and the musculature remaining reasonably constant (Pitchford and Bottema, 2000). Cattle breeds deposit fat at different rates and in different locations (subcutaneous, intermuscular or intramuscular). For example, early maturing Jersey cattle deposit more fat intramuscularly than late maturing Limousin cattle (Pitchford and Bottema, 2000). These differences suggest that there is a genetic basis for fat distribution. The aim of this study was to investigate the genetic variation in seam fat distribution within loin muscles of Jersey and Limousin cross cattle, independent from carcass size and fatness

    NOAA-11 SBUV/2 measurements of solar UV variations

    Get PDF
    The SBUV/2 instrument onboard the NOAA-11 satellite made daily solar spectral irradiance measurements in the wavelength region 160405 nm at 1.1 nm resolution between January 1989 and October 1994. These observations continued the uninterrupted series of solar measurements begun by the Nimbus-7 SBUV in 1978 and continued by NOAA-9 SBUV/2. While the measurements made by the SBUV-series instruments furnish an excellent data base for studies of solar UV variability, these instruments do not have an internal mew to evaluate and correct for long-term instrument sensitivity degradation, needed to evaluate solar cycle timescale irradiance change. During yearly Shuttle flights the Shuttle SBUV (SSBUV) also performs solar spectral irradiance measurements in the wavelength region 200 to 400 nm with an instrument that is calibrated preflight, inflight, and postflight. Comparisons between the simultaneous NOAA-11 SBUV/2 and SSBUV solar measurements are used to identify and correct long term sensitivity changes in the satellite instrument. The NOAA-11 data will then be used to evaluate long-term solar change. We present a progress report on the above process. At this preliminary stage uncertainties in the calibration transfer between SSBUV and NOAA-11 SBUV/2 are too large to accurately evaluate long-term solar change near the A1 edge, but solar rotational activity variations can be evaluated. We find that rotational activity declined from roughly 6% peak-to-peak (p-p) near the maximum of solar cycle 22 in 1989-1991 to approximately 3% p-p in mid 1992 and 2% p-p by mid 1994. Emphasizing rotational variations, comparisons between the 200 nm data and the NOAA-11 Mg II proxy index are presented

    Characterization of in band stray light in SBUV/2 instruments

    Get PDF
    Significant in-band stray light (IBSL) error at solar zenith angle (SZA) values larger than 77° near sunset in 4 SBUV/2 (Solar Backscattered Ultraviolet) instruments, on board the NOAA-14, 17, 18 and 19 satellites, has been characterized. The IBSL error is caused by large surface reflection and scattering of the air-gapped depolarizer in front of the instrument's monochromator aperture. The source of the IBSL error is direct solar illumination of instrument components near the aperture rather than from earth shine. The IBSL contamination at 273 nm can reach 40% of earth radiance near sunset, which results in as much as a 50% error in the retrieved ozone from the upper stratosphere. We have analyzed SBUV/2 albedo measurements on both the dayside and nightside to develop an empirical model for the IBSL error. This error has been corrected in the V8.6 SBUV/2 ozone retrieval

    Highlights from the 11-Year Record of Tropospheric Ozone from OMI/MLS and Continuation of that Long Record Using OMPS Measurements

    Get PDF
    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the University of Saskatchewan (USask) Algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of approximately 10 DU over Indonesia and decreases approximately 5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific
    corecore