6 research outputs found

    Trajectory control sensor engineering model detailed test objective

    Get PDF
    The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics

    Laser docking sensor engineering model

    Get PDF
    NASA JSC has been involved in the development of Laser sensors for the past ten years in order to support future rendezvous and docking missions, both manned and unmanned. Although many candidate technologies have been breadboarded and evaluated, no sensor hardware designed specifically for rendezvous and docking applications has been demonstrated on-orbit. It has become apparent that representative sensors need to be flown and demonstrated as soon as possible, with minimal cost, to provide the capability of the technology in meeting NASA's future AR&C applications. Technology and commercial component reliability have progressed to where it is now feasible to fly hardware as a detailed test objective minimizing the overall cost and development time. This presentation will discuss the ongoing effort to convert an existing in-house developed breadboard to an engineering model configuration suitable for flight. The modifications include improving the ranger resolution and stability with an in-house design, replacing the rack mounted galvanometric scanner drivers with STD-bus cards, replacing the system controlling personal computer with a microcontroller, and repackaging the subsystems as appropriate. The sensor will use the performance parameters defined in previous JSC requirements working groups as design goals and be built to withstand the space environment where fiscally feasible. Testing of the in-house ranger design is expected to be completed in October. The results will be included in the presentation. Preliminary testing of the ranging circuitry indicates a range resolution of 4mm is possible. The sensor will be mounted in the payload bay on a shelf bracket and have command, control, and display capabilities using the payload general support computer via an RS422 data line

    Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    Get PDF
    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement

    Digital Camera Control for Faster Inspection

    Get PDF
    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency

    Ultra-Wideband Time-Difference-of-Arrival Two-Point-Tracking System

    Get PDF
    A UWB TDOA Two-Point-Tracking System has been conceived and developed at JSC. This system can provide sub-inch tracking capability of two points on one target. This capability can be applied to guide a docking process in a 2D space. Lab tests demonstrate the feasibility of this technology

    NASA RFID Applications

    Get PDF
    This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined
    corecore