5 research outputs found

    Role of CpG island methylation and MBD2 in immune cell gene regulation

    Get PDF
    The phenomenon of cell type-specific DNA methylation has received much attention in recent years and a number of DNA methylation differences have been described between cells of the immune system. Of particular interest when studying DNA methylation are CpG islands (CGIs) which are distinct from the rest of the genome due to their elevated CpG content, generally unmethylated state and promoter association. In the instances when they become methylated this is associated with gene repression although it is unclear the extent to which differential methylation corresponds to differential gene expression. I have used an immune system model to assess the role of CGI methylation and the role of the methylation reader MBD2 in regulation of gene expression. A relatively small number of DNA methylation differences were seen between immune cell types with the most developmentally related cells showing the fewest methylation differences. Interestingly, the vast majority of CGI-associated cellspecific methylation occurred at intragenic CGIs located, not at transcription start sites, but in the gene body. Increased intragenic CGI methylation tended to associate with gene repression, although the precise reason for this remains unclear. Most differentially methylated CGIs were depleted for the active chromatin mark H3K4me3 regardless of their methylation state but some of these were associated with the silencing mark H3K27me3 when unmethylated. These findings suggest that intragenic CGIs are a distinct class of genomic element particularly susceptible to cell type-specific methylation. I also looked at the effect of removing the methyl- CpG binding domain protein MBD2 from immune system cells. Immune cells from Mbd2-/- mice showed a number of previously uncharacterised phenotypes as well as a number of differences in gene expression compared to wild-type animals. Most of these genes increased their expression in the absence of MBD2 consistent with MBD2’s role as a transcriptional repressor and Mbd2-/- Th1 cells showed increases in histone H3 acetylation compared to wild-type Th1 cells. This work provides an insight into the role played by cell-specific CGI methylation and MBD2 in regulating gene expression

    A unique DNA methylation signature defines a population of IFN-γ/IL-4 double-positive T cells during helminth infection

    Get PDF
    Th1 and Th2 cell fates are traditionally viewed as mutually exclusive, but recent work suggests that these lineages may be more plastic than previously thought. When isolating splenic CD4(+) T cells from mice infected with the parasitic helminth Schistosoma mansoni, we observed a defined population of IFN-γ/IL-4 double-positive cells. These IFN-γ(+)IL-4(+) cells showed differences in DNA methylation at the Ifng and Il4 loci when compared with IFN-γ(+)IL-4(−) (Th1) and IFN-γ(−)IL-4(+) (Th2) cells, demonstrating that they represent a distinct effector cell population. IFN-γ(+)IL-4(+) cells also displayed a discrete DNA methylation pattern at a CpG island within the body of the Gata3 gene, which encodes the master regulator of Th2 identity. DNA methylation at this region correlated with decreased Gata3 levels, suggesting a possible role in controlling Gata3 expression. These data provide important insight into the molecular mechanisms behind the co-existence of Th1 and Th2 characteristics

    CpG islands influence chromatin structure via the CpG-binding protein Cfp1

    Get PDF
    CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides(1,2). Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity(3,4). In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro(5,6). Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins

    CpG islands and the regulation of transcription

    Get PDF
    Vertebrate CpG islands (CGIs) are short interspersed DNA sequences that deviate significantly from the average genomic pattern by being GC-rich, CpG-rich, and predominantly nonmethylated. Most, perhaps all, CGIs are sites of transcription initiation, including thousands that are remote from currently annotated promoters. Shared DNA sequence features adapt CGIs for promoter function by destabilizing nucleosomes and attracting proteins that create a transcriptionally permissive chromatin state. Silencing of CGI promoters is achieved through dense CpG methylation or polycomb recruitment, again using their distinctive DNA sequence composition. CGIs are therefore generically equipped to influence local chromatin structure and simplify regulation of gene activity

    Cell type–specific DNA methylation at intragenic CpG islands in the immune system

    Get PDF
    Human and mouse genomes contain a similar number of CpG islands (CGIs), which are discrete CpG-rich DNA sequences associated with transcription start sites. In both species, ∼50% of all CGIs are remote from annotated promoters but, nevertheless, often have promoter-like features. To determine the role of CGI methylation in cell differentiation, we analyzed DNA methylation at a comprehensive CGI set in cells of the mouse hematopoietic lineage. Using a method that potentially detects ∼33% of genomic CpGs in the methylated state, we found that large differences in gene expression were accompanied by surprisingly few DNA methylation changes. There were, however, many DNA methylation differences between hematopoietic cells and a distantly related tissue, brain. Altered DNA methylation in the immune system occurred predominantly at CGIs within gene bodies, which have the properties of cell type–restricted promoters, but infrequently at annotated gene promoters or CGI flanking sequences (CGI “shores”). Unexpectedly, elevated intragenic CGI methylation correlated with silencing of the associated gene. Differentially methylated intragenic CGIs tended to lack H3K4me3 and associate with a transcriptionally repressive environment regardless of methylation state. Our results indicate that DNA methylation changes play a relatively minor role in the late stages of differentiation and suggest that intragenic CGIs represent regulatory sites of differential gene expression during the early stages of lineage specification
    corecore