-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

CpG islands and the regulation of transcription

Citation for published version:
Deaton, AM & Bird, A 2011, 'CpG islands and the regulation of transcription' Genes & Development, vol. 25,
no. 10, pp. 1010-1022. DOI: 10.1101/gad.2037511

Digital Object Identifier (DOI):
10.1101/gad.2037511

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genes & Development

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/28965568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1101/gad.2037511
https://www.research.ed.ac.uk/portal/en/publications/cpg-islands-and-the-regulation-of-transcription(7a9ee8b5-a486-4ab5-899b-8e6bd717cc9f).html

REVIEW

CpG islands and the regulation

of transcription

Aimée M. Deaton and Adrian Bird!

The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom

Vertebrate CpG islands (CGISs) are short interspersed DNA
sequences that deviate significantly from the average
genomic pattern by being GC-rich, CpG-rich, and pre-
dominantly nonmethylated. Most, perhaps all, CGIs are
sites of transcription initiation, including thousands that
are remote from currently annotated promoters. Shared
DNA sequence features adapt CGISs for promoter function
by destabilizing nucleosomes and attracting proteins that
create a transcriptionally permissive chromatin state.
Silencing of CGI promoters is achieved through dense
CpG methylation or polycomb recruitment, again using
their distinctive DNA sequence composition. CGIs are
therefore generically equipped to influence local chroma-
tin structure and simplify regulation of gene activity.

Vertebrate genomes are methylated predominantly at the
dinucleotide CpG, and consequently are CpG-deficient
owing to the mutagenic properties of methylcytosine
(Coulondre et al. 1978; Bird 1980). The globally methylated,
CpG-poor genomic landscape is punctuated, however, by
CpG islands (CGIs), which are, on average, 1000 base pairs
(bp) long and show an elevated G+C base composition,
little CpG depletion, and frequent absence of DNA
methylation. These shared properties have allowed CGIs
to be isolated as a relatively homogeneous fraction of the
genome, despite the heterogeneity of their individual
nucleotide sequences (Bird et al. 1985; Cross et al. 1994;
Mlingworth et al. 2010). Approximately 70% of annotated
gene promoters are associated with a CGI, making this
the most common promoter type in the vertebrate genome
(Saxonov et al. 2006). Included are virtually all housekeep-
ing genes, as well as a proportion of tissue-specific genes
and developmental regulator genes (Larsen et al. 1992; Zhu
et al. 2008). Recent work has uncovered a large class of
CGIs that are remote from annotated transcription start
sites (TSSs), but nevertheless show evidence for promoter
function (Illingworth et al. 2010; Maunakea et al. 2010).
These findings emphasize the strong correlation between
CGIs and transcription initiation.
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In spite of their link with transcription, the functional
significance of CGIs is only just beginning to emerge. CGI
promoters turn out to have distinctive patterns of tran-
scription initiation and chromatin configuration. Their
regulation involves proteins (some of which specifically
bind nonmethylated CpG]) that influence the modifica-
tion status of CGI chromatin. In addition, the CpG moieties
themselves are sometimes subject to cytosine methylation,
which correlates with stable shutdown of the associated
promoter. Here we examine the properties shared by ver-
tebrate CGIs and how transcription is regulated at these
sites. Recent related reviews include Ilingworth and Bird
(2009), Mohn and Schubeler (2009), and Blackledge and
Klose (2011).

Evolutionary conservation of CGIs

CGlIs are distinct in vertebrates due to their lack of DNA
methylation and absence of CpG deficiency, which sets
them apart form bulk genomic DNA. Organisms such as
the invertebrates Drosophila melanogaster and Caeno-
rhabditis elegans and the fungus Saccharomyces cerevi-
ceae have little or no DNA methylation and, as a result,
CpG occurs at the expected frequency throughout the
genome. CGIs are not detectable in these genomes be-
cause, in a sense, the whole genome is CGI-like. On the
other hand, many plant genomes are very highly meth-
ylated, and early research detected a nonmethylated CGI-
like genomic fraction (Antequera and Bird 1988). Lack of
DNA methylation in plants is evidently linked to genes,
as isolation of nonmethylated DNA by “methylation
filtration” greatly enriches for transcribed sequences
(Palmer et al. 2003), despite the presence of gene body
methylation in these organisms (Zhang et al. 2006;
Zilberman et al. 2007). Extensive DNA methylome
analysis has documented nonmethylated regions at both
extremities of plant transcription units (Feng et al. 2010;
Zemach et al. 2010). Whether these can be considered
equivalent to or distinct from vertebrate CGIs is not
presently known.

Unlike vertebrates, most invertebrate animals exhibit
mosaically methylated genomes comprising alternating
methylated and nonmethylated domains (Bird et al. 1979;
Tweedie et al. 1997). The persistence over evolutionary
time of discrete genomic regions with different DNA
methylation states has partitioned DNA sequences into
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two fractions: (1) methylated and, consequently, CpG-
deficient; and (2) nonmethylated, with the expected
frequency of CpG. The origin of vertebrates appears to
have coincided with a transition from mosaic to global
DNA methylation, accompanied by concomitant CpG
depletion throughout most of the genome (Tweedie et al.
1997). Well-studied among the mosaic genomes is the
invertebrate Ciona intestinalis (sea squirt), which is evo-
lutionarily close to the invertebrate-vertebrate boundary.
C. intestinalis genes within methylated domains are some-
times associated with short nonmethylated CGI-like re-
gions that colocalize with TSSs (Suzuki et al. 2007). CGIs
may therefore predate the evolution of vertebrates.
Until recently, it was not clear that CGIs were con-
served in either number or genomic location between
different vertebrates. Initially, far fewer CGIs were bio-
informatically predicted in the mouse genome than in the
human genome (Waterston et al. 2002), and this apparent
lack of conservation called into question their regulatory
importance. CGI prediction algorithms by necessity em-
ploy thresholds for detection, alteration of which dramat-
ically changes the number predicted (Illingworth et al.
2008; Illingworth and Bird 2009). The algorithms are also
unable to take into account the methylation status of
CGIs. A biochemical approach has shed fresh light on the
issue, using affinity purification with the CXXC protein
domain to isolate clusters of unmethylated CpGs from
genomic DNA (Illingworth et al. 2008). High-throughput
DNA sequencing of this fraction identified a compre-
hensive CGI complement from both humans and mice
(Illingworth et al. 2010) and revealed similar numbers of
CGISs per haploid genome: 25,495 and 23,021, respectively.
The reason for the initial discrepancy is that mouse CGIs
show, on average, a slightly lower CpG content compared
with human CGIs. Biochemical purification of clusters of
nonmethylated CpG overcomes this weakness. Also con-
served between humans and mice was the proportion of
CGIs associating with annotated TSSs (~50%). Moreover,

CpG islands and transcription

the remaining half of CGIs were distributed equally
between locations within gene bodies (intragenic) or
between genes (intergenic) in both species (Fig. 1). The
genomic position of many of these additional CGIs appears
to have been maintained since the divergence of humans
and mice ~75 million years ago, implying functional
importance.

CGls are sites of transcriptional initiation

About half of all CGIs self-evidently contain TSSs, as they
coincide with promoters of annotated genes. The other
half are either within or between characterized transcrip-
tion units and have been termed “orphan” CGIs to reflect
uncertainty over their significance (Illingworth et al.
2010). Do orphan CGIs weaken the correlation between
CGIs and transcriptional activity, or do they also mark
hitherto unsuspected promoters? The available evidence
shows that many orphan CGIs are also sites of transcrip-
tional initiation. Specific examples of intragenic CGI
promoters have been known for many years. For example,
CGlIs at the 3’ end of the Pomc gene and exon 2 of the
MHC class II I-AB gene both initiate transcripts of un-
known function whose coding potential is minimal
(Gardiner-Garden and Frommer 1994; Macleod et al.
1998). More is known functionally about the role played
by the Air transcript in imprinting of the Igf2r gene. Air is
a noncoding RNA (ncRNA) that initiates at a CGI within
intron 2 of Igf2r and is essential for silencing of the paternal
allele (Sleutels et al. 2002). Similarly, analysis of a CGI in
intron 10 of the imprinted Kcngl gene identified it as the
origin of a noncoding transcript (Kcnglotl) that is
required for imprinting of several genes within this domain
(Mancini-DiNardo et al. 2003, 2006). In these and other
cases, the presence of a CGI in an unexpected location
stimulated a successful search for an associated transcript.

Genome-wide analyses have confirmed that many orphan
CGIs represent novel promoters (Illingworth et al. 2010;

A “orphan CGIs” Figure 1. The genomic distribution of CGIs. (A) CGIs
can be located at annotated TSSs, within gene bodies
(Intragenic), or between annotated genes (Intergenic).
TSS Intragenic Intergenic Intragenic and intergenic CGIs of unknown func-
tion are classed as “orphan” CGlIs. (Empty circles)
i e 0 af il Unmethylated CpG residues. (Filled circles) Methyl-
|—’ ated CpG residues. (B) The genomic distribution of
[ 1 - 1 ] CGIs in the human and mouse genome as deter-
mined by Illingworth and colleagues (2010). The total
& number of CGIs is given at the top of each graph.
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o 904 Int Int
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Maunakea et al. 2010). Criteria for transcript annotation
include colocalization of a CGI with bound RNA Poly-
merase II (RNAPII) as detected by chromatin immunopre-
cipitation (ChIP) or, more tellingly, RNA sequence data
showing that transcripts originate within orphan CGIs
(Fig. 2; Illingworth et al. 2010; Maunakea et al. 2010).
Examples of the latter data include cap analysis of gene
expression (CAGE), which uses the 5’ cap to isolate and
sequence full-length transcripts (Shiraki et al. 2003), and
global run-on sequencing (GRO-seq) (Core et al. 2008),
which detects in vitro elongation of engaged RNAPIL
Altogether, evidence for transcriptional initiation has been
found at ~40% of orphan CGIs (~5000) (Illingworth et al.
2010). Less directly, CGIs are frequently marked by
trimethylation of histone H3 (H3K4me3), which is a signa-
ture of active promoters (see Fig. 2 and below). A subset of
intergenic H3K4me3 peaks (~1600), many of which are
likely to correspond to orphan CGIs, were found to
represent TSSs for long ncRNAs (Guttman et al. 2009).
Many orphan CGI promoters are active in a tissue-
specific manner (Illingworth et al. 2010), suggesting that
they are tightly regulated. Because only a few tissues have
been investigated so far, it is likely that most, if not all,
orphan CGIs will be associated with a novel transcript.
What is the functional significance of this transcription?
Some orphan CGIs probably represent alternative pro-
moters of nearby annotated genes (Maunakea et al. 2010).
Others may initiate ncRNAs that regulate gene expres-
sion. For example, the study of imprinted genes has
already uncovered key examples of the regulatory rele-
vance of CGI-derived ncRNAs (see above). In addition to
Air and Kcnglotl, the Xist and Tsix ncRNAs function
in X-chromosome inactivation (Herzing et al. 1997; Lee
etal. 1999), and the ncRNA HOTAIR has been reported to
regulate Hox gene expression (Rinn et al. 2007). Given the
hitherto unsuspected abundance of CGI promoters in the
genome, it seems likely that involvement of ncRNAs in
gene regulation may be widespread. Recent studies have
shown that enhancers are often associated with transcrip-
tion of ncRNAs, although these have not been linked so

far to CGIs (Kim et al. 2010). In a different vein, CGI
promoters within MHC class II genes coincide precisely
with the hypervariable exon 2, whose polymorphism is
caused by gene conversion between members of the class
II gene family. It has been suggested that the “open” CGI
chromatin structure in germ cells enhances gene conver-
sion in this exon, thereby benefiting the immune system
(Macleod et al. 1998). Potential roles as boundaries or
insulators of transcriptional units remain as yet unex-
plored. In summary, the biological roles played by CGI
transcripts may be diverse, but the stage is now set for
rigorous testing of hypotheses concerning their function.

It is clear from the above discussion that CGIs act as
promoters in mammalian genomes. This leaves two pos-
sibilities regarding their significance: (1) CGIs are evolu-
tionary footprints of molecular events that occur at many
eukaryotic promoters, but are only visible in organisms
that have extensive genomic DNA methylation; or (2)
CGls are important regulatory structures that have evolved
under selection in genomes where DNA methylation plays
a regulatory role. The weight of evidence now appears to
support the second of these possibilities. In what follows,
we summarize this emerging data and discuss ways in
which CGlIs are adapted for promoter function.

Characteristics of CGI promoters

DNA sequence motifs

CGlIs colocalize with the majority of promoters in both
the human and mouse genomes. Early studies suggested
that CGI promoters may often lack TATA boxes and
display heterogeneous TSSs (Reynolds et al. 1984). CAGE
analysis has shown, on a genome-wide scale, the broad
correlation between this distributive pattern of transcrip-
tion initiation, typically over a region of 50-100 bp, and
the presence of CGIs (Carninci et al. 2006). These obser-
vations are compatible with the idea that CGI promoters
adopt a transcriptionally permissive state within which
initiation can occur at a number of locations. In general,
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Figure 2. Orphan CGlIs are sites of transcriptional initiation. High-throughput sequencing data showing colocalization of orphan CGIs
with sites of transcriptional initiation taken from Illingworth et al. (2010). CXXC affinity purification identifies the locations of CGIs
that overlap with H3K4me3, RNAPII, GRO-seq (Core et al. 2008), and CAGE tags (Faulkner et al. 2009). Genes (RefSeq) are annotated
below the sequencing profiles, with those mapped to the positive and negative strand displayed above and below the chromosome line,

respectively. Orphan CGIs are denoted by asterisks.
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TATA boxes, along with other core promoter elements
(such as the BRE, DPE, and DCE), tend to be associated
with focused transcriptional initiation, whereas CGlIs tend
to lack these elements and display dispersed initiation
patterns (for review, see Juven-Gershon et al. 2008). There
are, however, exceptions to this generalization. The hu-
man genes for a-globin, MyoD1, and erythropoietin, for
example, have CGI promoters, yet possess TATA boxes.

The idea that many CGI promoters are transcription-
ally permissive is supported by genome-wide ChIP and
transcriptome analysis. RNAPII is bound at the CGI
promoters of many inactive genes in embryonic stem (ES)
cells (Guenther et al. 2007) and at silent lipopolysaccha-
ride (LPS)-inducible genes in unstimulated macrophages
(Hargreaves et al. 2009). Also, global nuclear run-on anal-
ysis examining the products of transcriptionally engaged
RNAPI molecules detected bidirectional transcription
of short nonproductive RNAs as well as full-length tran-
scripts at many CGI promoters (Core et al. 2008; Seila et al.
2008). Much emphasis had been placed previously on the
recruitment of RNAPII as the rate-limiting step in tran-
scription, but these results suggest that regulation of many
CGI promoters takes place downstream from polymerase
binding. One way of achieving this is by regulating tran-
scriptional elongation and mRNA processing, as in the
case of CGl-associated inducible genes in macrophages
(Hargreaves et al. 2009). In the latter study, RNAPII re-
cruitment was dependent on the transcription factor Spl,
but the initiating form of RNAPII (phosphorylated at Ser 5
of the C-terminal domain [CTD]) was promoter-bound
even when the genes were inactive and low levels of full-
length transcripts were produced (Hargreaves et al. 2009).
A switch from nonproductive to productive transcription
was triggered by inducible transcription factor-dependent
recruitment of P-TEFb and subsequent Ser 2 phosphoryla-
tion of the RNAPII CTD. This resulted in the production of
mature, processed transcripts. Similarly, gene regulation at
the level of transcriptional elongation via RNAPII pausing
(controlled by the pause factors DSIF and NELF) and release
of RNAPII mediated by P-TEFb (for review, see Peterlin and
Price 2006) is reported to be widespread in ES cells (Rahl
et al. 2010). CGI promoters, it seems, attract RNAPII and,
unless actively restrained, will engage in transcription of
some kind.

Transcription factor binding at CGIs

CGlISs share little long-range sequence conservation, apart
from an elevated CpG density and G+C content, and
often lack core promoter elements such as the TATA box
(Carninci et al. 2006; Juven-Gershon et al. 2008). What
features adapt them to promoter function? A simplistic
possibility is that GC richness increases the probability
that ubiquitous transcription factors will bind. In general,
mammalian transcription factor-binding sites are more
GC-rich than the bulk genome (see Fig. 3) and many
contain CpG in their recognition sequence. These in-
clude the general transcription factor Sp1, which has been
shown to recruit TATA-binding protein (TBP) to pro-
moters lacking a TATA box (Butler and Kadonaga 2002).

CpG islands and transcription
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Figure 3. Transcription factor-binding sites are, on average, GC-
rich. The G+C content of binding sites for 46 mouse transcription
factors was calculated using fasta sequences of actual binding
sites obtained from the JASPAR database (Bryne et al. 2008).
G+C frequency is given on the X-axis, while the Y-axis shows
the number of each of these 46 binding sites with a given G+C
frequency.

Transient reporter gene assays examining the activity of
4575 human promoters found that ubiquitously active
CGI promoters tended to be enriched for Sp1, Nrf-1, E2F,
and ETS transcription factor-binding motifs, each of
which contains a CpG (Landolin et al. 2010). Consistent
with this, potential ETS and E2F family binding sites, as
characterized in vitro, are overrepresented in mouse CGlIs
(Jaeger et al. 2010). Similarly, CpG-containing ETS, NRF-
1, BoxA, SP1, CRE, and E-box motifs are enriched in the
CGI promoters of housekeeping genes (Rozenberg et al.
2008), and Sp1 binding on human chromosomes 21 and 22
is focused predominantly at CGIs (Cawley et al. 2004). In
the case of the a-globin gene, DNA footprinting studies
detected little difference in transcription factor-binding
patterns whether the gene was active or inactive (Cuadrado
et al. 2001), suggesting that, even in the case of a highly
tissue-specific gene, transcription factor binding can be
constitutive.

The chromatin signature of CGIs

Unstable nucleosomes

There is evidence that nonmethylated CGIs are organized
in a characteristic chromatin structure that predisposes
them toward promoter activity. A study of chromatin at
LPS-inducible genes in macrophages found that CGIs are
relatively nucleosome-deficient (Ramirez-Carrozzi et al.
2009). Inducible “primary response genes” fall into two
classes: those that require SWI/SNF chromatin remodel-
ing complexes for their activation and those that do not.
It was noticed that these groups corresponded with non-
CGI and CGI promoters, respectively, suggesting that
DNA in CGI chromatin is intrinsically accessible without
the need for ATP-dependent nucleosome displacement
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(Ramirez-Carrozzi et al. 2009). In macrophages, the CGls
showed a reduced density of histone H3 even in the un-
induced state. Accordingly, in vitro nucleosome assembly
indicated that a set of these CGIs is significantly more
reluctant to assemble into nucleosomes than other geno-
mic DNA (Ramirez-Carrozzi et al. 2009). An attractive
interpretation of the in vitro instability of CGI chromatin
is that weakening of this barrier allows greater accessi-
bility of the underlying DNA to transcriptional regulators
in vivo. Other evidence has shown that nucleosome
deficiency is a feature of CGI promoters in general. Early
analysis of CGI chromatin detected abundant nonnucleo-
somal DNA that was absent in preparations of bulk
chromatin (Tazi and Bird 1990). The same conclusion
emerged from a re-examination of genome-wide nucleo-
some mapping data (Schones et al. 2008; Choi 2010). In
addition to chromatin instability, nucleosome deficiency
in vivo may also arise because CGI promoters, in com-
mon with all eukaryotic promoters, typically possess a
nucleosome-free region surrounding the TSS (Schones
et al. 2008). In other words, active promoters by definition
may be nucleosome-deficient whether or not they are
CGlIs. It is not yet certain whether nucleosome deficiency
at CGls is due primarily to intrinsic chromatin instability
or nucleosome exclusion due to the presence of the tran-
scription initiation complex. It could, of course, be a mixture
of both, and may even vary between individual CGIs.

Characteristic histone modifications

Early biochemical studies of isolated CGI chromatin
showed high levels of histone H3 and H4 acetylation,
which are characteristic of transcriptionally active chro-
matin. Histone H1, on the other hand, which is regarded
as antagonistic to transcription, was depleted in this
fraction (Tazi and Bird 1990). Genome-wide studies have
confirmed this association at high resolution (Birney et al.
2007; Wang et al. 2008) and have revealed that H3K4me3
is a signature histone mark of CGI promoters, often
persisting even when the associated gene is inactive
(Guenther et al. 2007; Mikkelsen et al. 2007). Recent
work has established a biochemical connection between
the abundance of CpG in CGIs and H3K4me3, mediated
by a CXXC domain protein that binds specifically to
nonmethylated CpG (Voo et al. 2000). Cfpl (CXXC finger
protein 1; also known as CGBP) is an integral component
of the Setdl H3K4 methyltransferase complex (Lee and
Skalnik 2005) and localizes to the vast majority of CGIs
in the mouse genome, suggesting dependence of this his-
tone modification on the DNA sequence (Thomson et al.
2010). In keeping with this model, depletion of Cfpl
reduces H3K4me3 at many CGIs. Importantly, insertion
of an artificial CGI-like DNA sequence into the genome
results in recruitment of Cfpl and creates a novel peak
of H3K4me3 in the absence of RNAPII (Thomson et al.
2010). Further support for a mechanistic link between
unmethylated CpG residues, Cfpl, and H3K4me3 comes
from the finding that CpG density in CGIs correlates
positively with H3K4me3 levels (Illingworth et al. 2010).
The ability of CpG density alone to directly influence the
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chromatin modification state (Thomson et al. 2010) is
likely to be a key function of CGIs.

The presence of H3K4me3 appears to facilitate tran-
scription in a number of ways. The H3K4me3 tail has been
shown to interact with the NuRF chromatin remodeling
complex (Li et al. 2006; Wysocka et al. 2006; Ruthenburg
et al. 2007) as well as ING4-containing histone acetyl-
transferase complexes (Saksouk et al. 2009). Also, H3K4me3
interacts with the transcriptional machinery directly, as
the core transcription factor TFIID has an affinity for the
H3K4me3 mark (Vermeulen et al. 2007; van Ingen et al.
2008). Core transcriptional machinery can recruit H3K4
methyltransferases to chromatin (for review, see Ruthenburg
et al. 2007), so it is likely that transcription also contrib-
utes to H3K4me3 at CGIs. The relative contributions of
CpG-mediated and transcription-mediated H3K4me3 to
CGI chromatin modification have yet to be determined.

Another distinctive feature of CGI chromatin is deple-
tion of histone H3K36 dimethylation (H3K36me2) com-
pared with non-CGI promoters and gene bodies (Blackledge
et al. 2010). The H3K36me2 histone demethylase Kdm2a
(Tsukada et al. 2006) is a CXXC domain protein that, like
Cfpl, binds specifically to nonmethylated CpG. Accord-
ingly, Kdm?2a is bound in vivo at ~90% of CGIs in mouse
ES cells and mediates demethylation of H3K36me2 at
these regions (Blackledge et al. 2010). Why H3K36me2
should be depleted at CGIs is uncertain, but this mod-
ification has been reported to inhibit transcriptional
initiation through histone deacetylase (HDAC) recruit-
ment in yeast (Strahl et al. 2002; Youdell et al. 2008; Li
et al. 2009). H3K36me2 depletion may therefore contrib-
ute to a transcriptionally permissive state at CGls (Fig.
4A). Both Cfpl and Kdm?2a have the characteristics of CGI-
specific proteins that use CpG density to influence chro-
matin modification. It is likely that more factors of this
kind are yet to be identified, for example, by a comprehen-
sive characterization of the CGI proteome.

CGI promoter silencing by DNA methylation

CGls are typically in a nonmethylated state in an other-
wise heavily methylated genome, even when the corre-
sponding gene is transcriptionally inactive. There are,
however, well-known examples of CGIs that become
methylated during normal development, leading to stable
silencing of the associated promoter (Stein et al. 1982;
Mohn et al. 2008; Payer and Lee 2008). Silencing is
thought to be either due to direct inhibition of transcrip-
tion factor binding by DNA methylation or mediated by
methyl-binding domain (MBD) proteins that recruit chro-
matin-modifying activities to methylated DNA (see Fig.
4B; for reviews, see Klose and Bird 2006; Bogdanovic and
Veenstra 2009). It seems that CGI methylation is not the
initiating event in gene silencing, but acts to lock in the
silent state. For example, during X-chromosome inacti-
vation in female eutherian mammals, X-linked CGIs do
not become methylated until after gene silencing and the
acquisition of several silencing chromatin modifications,
such as H3K27me3 (for reviews, see Payer and Lee 2008;
Okamoto and Heard 2009). CGI methylation is, however,
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Figure 4. The chromatin state at CGIs. (A) CGIs usually
exist in an unmethylated transcriptionally permissive
state. They are marked by histone acetylation (H3/
H4Ac) and H3K4me3, which is directed by Cfpl, and
show Kdm2a-dependent H3K36me2 depletion. Nucleo-
some deficiency and constitutive binding of RNAPII may
also contribute to this transcriptionally permissive state.
(B) DNA methylation is associated with stable long-term
silencing of CGI promoters. This can be mediated by
MBD proteins, which recruit corepressor complexes
associated with HDAC activity, or may be due to di-
rected inhibition of transcription factor binding by DNA
methylation. (C) CGIs can also be silenced by PcG
proteins and may be key elements involved in polycomb
recruitment. An unknown CGI-binding factor could be
responsible for recruiting PRC2 to CGIs that then
trimethylates H3K27. This H3K27me3 is recognized by
PRC1 complexes that act to impede transcriptional
elongation, thereby silencing genes. Note that the tran-
scriptionally permissive and polycomb-repressed states
can coexist at bivalent CGIs, predominantly in totipo-
tent embryonic cells.
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essential for maintenance of leak-proof X-chromosome
inactivation, as inhibition of DNA methylation leads to
gene reactivation in a fraction of cells (Sado et al. 2000;
Csankovszki et al. 2001). As discussed above, CGI meth-
ylation also has well-characterized roles in genomic
imprinting where parent-of-origin monoallelic expression
is controlled by CGI methylation marks (for review, see
Edwards and Ferguson-Smith 2007). In several instances,
the CGIs concerned act as promoters for ncRNAs whose
expression is silenced by DNA methylation. Expression
of these ncRNAs—including Air and Kcnglotl—is re-
sponsible for the silencing of neighboring genes (Sleutels
et al. 2002; Mancini-DiNardo et al. 2003, 2006).

Until recently, methylation of CGIs during imprinting
and X-chromosome inactivation were suspected to be
special cases, most CGIs remaining nonmethylated re-
gardless of gene expression. However, genome-wide stud-
ies focusing on CGIs at annotated TSSs have uncovered
numerous instances of CGI methylation in normal so-
matic cells. CGIs in the germline are almost invariably
nonmethylated, but a small proportion acquire methyla-
tion in somatic tissues (Schilling and Rehli 2007; Shen
et al. 2007; Weber et al. 2007). Similarly, a small number
of CGI promoters acquire methylation during differenti-
ation of ES cells into neurons, with most of the changes

taking place during the early stages of differentiation
(Mohn et al. 2008). The majority of CGIs that gain
methylation during differentiation are already silent in
ES cells (Mohn et al. 2008), providing further evidence
that silencing precedes DNA methylation. The genes
affected are often expressed only in the germline, such
as the MAGE family of testis-specific antigens (De Smet
et al. 1999). Differences in gene-associated CGI methyl-
ation between one somatic tissue and another have also
been reported, although these are relatively rare com-
pared with differences between germline and somatic
CGlIs (Meissner et al. 2008).

In contrast to the rarity of methylated CGIs at the
promoters of annotated genes, orphan CGIs are methyl-
ated much more frequently. About 17% of orphan CGIs
have been found so far in a methylated state, com-
pared with ~3% of CGIs at annotated gene promoters
(Ilingworth et al. 2008, 2010; Rauch et al. 2009; Maunakea
et al. 2010). By further separating orphan CGIs into
intragenic and intergenic categories, it becomes apparent
that intragenic CGIs are especially prone to methylation
(~20%-34%) ([lingworth et al. 2010; Maunakea et al.
2010). Accordingly, CGIs located within gene bodies show
the greatest number of DNA methylation differences be-
tween different somatic cells and tissues (Maunakea et al.
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2010; AM Deaton, S Webb, ARW Kerr, RS Illington, ] Guy,
R Andrews, and A Bird, in prep.). Functionally, it can be
speculated that some of the transcripts initiating from
gene body CGIs are regulatory ncRNAs whose presence or
absence affects expression of the associated protein-coding
gene or a nearby gene (Dinger et al. 2008; Mercer et al.
2009; Orom et al. 2010). Another possibility is that these
sites of unusual chromatin and transcription affect alter-
native splicing of the gene in which they are located in
a manner that differs with methylation status (Kornblihtt
20006). It is also possible that a methylated CGI within
a gene body down-regulates transcriptional elongation, as
reported in a transgenic cell model (Lorincz et al. 2004).
Further studies are required to elucidate the consequences
of methylation at these sites.

In addition to its occurrence during normal develop-
ment, CGI methylation has been well documented in
cancer. The CGIs of several tumor suppressor genes
acquire cancer-specific methylation, and many genes
involved in familial forms of cancer undergo DNA
methylation-associated silencing in sporadic cancers (for
review, see Jones and Baylin 2002, 2007). These changes
are thought to contribute to uncontrolled proliferation
and thus tumor development. However, whether DNA
methylation is the initiating event in gene silencing or is
acquired at already silenced genes remains unclear.
Genome-wide studies have demonstrated that many of
the CGIs that acquire aberrant methylation in cancer are
not associated with tumor suppressor genes (Weber et al.
2005; Keshet et al. 2006; Illingworth et al. 2010; Ruike
et al. 2010). A key issue regarding cancer-specific CGI
methylation is whether it mirrors normal developmental
methylation. Profiling DNA methylation in the flanks of
CGIs suggested that cancer-specific methylation pat-
terns resemble those occurring in normal tissues (Irizarry
et al. 2009). A recent study, however, suggested that
cancer-specific CGI methylation can be distinguished
from that in normal tissues. Unlike normal tissues, where
orphan CGIs are preferentially methylated, in colorectal
cancers, the proportion of TSSs, intragenic CGIs, and
intergenic CGIs acquiring tumor-specific methylation
was approximately equal (Illingworth et al. 2010).

CGIs and polycomb-mediated silencing

In addition to DNA methylation, CGI promoters can be
silenced by polycomb group proteins (PcG). There are two
PcG complexes in mammals: polycomb-repressive com-
plex 1 (PRC1) and PRC2. PRC2 mediates H3K27me3, and
this mark is recognized by PRC1, which is thought to in-
hibit transcriptional elongation by a mechanism involv-
ing H2A ubiquitylation (Stock et al. 2007; Zhou et al. 2008)
and/or chromatin compaction (Eskeland et al. 2010). Dif-
ferentiation of ES cells into neurons is accompanied by
losses and gains of H3K27me3 at many promoters at various
stages of differentiation. In contrast, DNA methylation is
gained at a relatively small number of promoters only during
the early stages of differentiation, remaining relatively stable
thereafter (Mohn et al. 2008). This indicates that polycomb
is a more dynamic repression system than DNA methyla-
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tion, at least during later developmental stages. In ES cells,
CGlIs silenced by polycomb possess the “active” mark
H3K4me3 as well as H3K27me3 (Azuara et al. 2006;
Bernstein et al. 2006; Mikkelsen et al. 2007). These “bi-
valent” CGI promoters are poised between two alternative
states: either active transcription or stable repression.
Upon differentiation, they can lose H3K27me3 and be-
come active or be subject to more stable transcriptional
repression. Bivalent CGI promoters account for approxi-
mately one-fifth of CGI promoters in ES cells (Ku et al.
2008) but are also found in other cell types, although to
a lesser extent (Roh et al. 2006; Mikkelsen et al. 2007).

Acquisition of CGI methylation in cancer has been
found to occur preferentially at genes marked by H3K27me3
in ES cells (Ohm et al. 2007; Widschwendter et al. 2007;
Mlingworth et al. 2010). By mirroring the pattern of
polycomb-dependent gene silencing established in ES
cells, DNA methylation may hypothetically facilitate
maintenance of a “pseudo-pluripotent state,” thereby
favoring unrestrained proliferation of cancer cells (Keshet
et al. 2006; Ohm et al. 2007; Schlesinger et al. 2007). It has
also been found that promoters that are positive for
H3K27me3 in ES cells are more than four times more
likely to acquire DNA methylation, supporting the idea
that there is a relationship of some sort between the two
systems (Mohn et al. 2008). One report claimed that the
PcG protein Ezh2, which catalyzes H3K27me3, can re-
cruit DNA methyltransferases directly (Vire et al. 2006),
but this mechanistic link remains unproven. In many
respects, DNA methylation and polycomb behave as al-
ternative silencing mechanisms in ES cells (Fouse et al.
2008; Mohn et al. 2008).

Interestingly, polycomb tends to be targeted to CGI-
containing regions of the genome (Mikkelsen et al. 2007;
Ku et al. 2008), whereas non-CGI promoters do not often
associate with H3K27me3 (Mikkelsen et al. 2007; Mohn
et al. 2008). The observation that some CGIs are specif-
ically targeted by polycomb led to the hypothesis that
these DNA sequences are prone to polycomb recruitment
(Fig. 4C). Although H3K27me3 often tends to mark large
genomic domains, binding of Ezh2 (the catalytic compo-
nent of PRC2) in human ES cells strongly correlates with
CGlIs and, in particular, those lacking motifs for activat-
ing transcription factors (such as Etsl and 2, NFY, YY1,
and ¢-Myc) (Ku et al. 2008). Intriguingly, a polycomb
recruitment element identified in human cells is a nucle-
osome-deficient sequence that includes a CGI (Woo et al.
2010). A recent study provided functional evidence of a
role for CGIs in polycomb recruitment. The CGI of the
bivalent Zfpm?2 locus was found to be sufficient to recruit
H3K27me3, H3K4me3, and PRC2 to a human gene desert
region inserted into mouse ES cells (Mendenhall et al.
2010). Interestingly, GC-rich DNA from a bacterial source
also had the ability to recruit PRC2, suggesting that base
composition plays an important role.

As the majority of CGIs do not normally recruit poly-
comb, base composition per se is very unlikely to be the
only factor involved in attracting or excluding polycomb.
To explain this selectivity, it was proposed that the presence
of transcription factor-binding motifs within a CGI might



be sufficient to protect it from PRC2 recruitment (Ku et al.
2008). Consistent with this hypothesis, deletion of acti-
vating motifs at a CGI promoter that normally lacks
H3K27me3 in ES cells resulted in PRC2 recruitment and
modification of H3K27 (Mendenhall et al. 2010). This
suggests that transcription factor binding or productive
transcription may be sufficient to protect against silencing
by polycomb. A corollary of this hypothesis is that poly-
comb-mediated silencing, like DNA methylation, is sec-
ondary to gene silencing by other mechanisms. This fits
with early work on Drosophila showing that polycomb
group proteins do not affect the establishment of develop-
mental gene expression patterns, but are essential to main-
tain those patterns through time. Indeed, recent experi-
ments in Drosophila indicate that polycomb is preferentially
targeted to stalled promoters of coding and noncoding
transcripts (Beisel and Paro 2011; Enderle et al. 2011) or
to forms of RNA polymerase that are not competent to
couple RNA synthesis with cotranscriptional modifica-
tion (Brookes and Pombo 2009). Transcriptionally silent
CGIs may not always be sufficient to invite polycomb,
however, as PRC2-recruitment is proposed to depend on
transcription of ncRNAs from CGIs (Rinn et al. 2007; Zhao
et al. 2008). Short transcripts produced from bivalent CGIs
in ES and T cells are reported to form stem-loop structures
that may be involved in recruiting polycomb to these CGIs
(Kanhere et al. 2010). In addition, the JmjC domain-
containing protein Jarid2 has been identified as a novel
component of PRC2 and has been implicated in poly-
comb targeting in mammals (for review, see Herz and
Shilatifard 2010). We have clues about the mechanisms
behind polycomb recruitment to specific sites in the
mammalian genome and the role played by CGIs in this
process, but much remains to be learned.

What protects CGIs from DNA methylation?

CGls are generally unmethylated CpG-enriched domains
that occur against a backdrop of genome-wide DNA
methylation and consequent CpG depletion. How are
they protected from the waves of de novo DNA methyl-
ation that occur during development? A simple explana-
tion would be that CGIs are intrinsically refractory to the
action of DNA methyltransferases, but this is very un-
likely. Some CGIs do become methylated during normal
development; for example, hundreds of CGIs are heavily
methylated on one female X chromosome, but are non-
methylated on the other. An alternative possibility is that
methylation at CGIs is actively removed by a DNA
demethylase (Wu and Zhang 2010), but uncertainty
concerning the identity of the DNA demethylating ac-
tivities in animals has made this hypothesis difficult to
test. The discovery that 5-methylcytosine can be con-
verted to 5-hydroxymethylcytosine (hmC) poses the
tantalizing possibility that hmC is an intermediate in
the demethylation process (Ito et al. 2010; Wu and Zhang
2010). The demethylating enzyme Tetl possesses a do-
main related to the CpG-binding CXXC domain found in
Cipl (Tahiliani et al. 2009), and could in theory be tar-
geted to CGIs. Compatible with this hypothesis, recent
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studies locate Tetl preferentially at CGIs in mouse ES cells
(Ficz et al. 2011; Wu et al. 2011a,b), and depletion of Tetl
results in increased CpG methylation at CGls (Wu et al.
2011a). An attractive scenario is that CGls are subject to
sporadic de novo methylation, but are continually swept
clean by a mechanism involving oxidation of 5-methyl-
cytosine. Defects in such a system may predispose to de
novo CGI methylation, as seen in many cancers. Indeed,
mutations in the TET2 gene are frequent in leukemias and
compromise the hydroxylation reaction (Ko et al. 2010).

Regardless of the detailed molecular mechanism, there
is evidence that the methylation-free state of CGIs is
causally related to their function as promoters. Deletion
or mutation of Spl transcription factor-binding sites in
the mouse Aprt promoter results in a failure to maintain
the unmethylated state of the Aprt CGI in transgenic
experiments (Brandeis et al. 1994; Macleod et al. 1994).
This suggests that the binding of transcription factors, or
the act of transcription itself, during early development is
required for establishment of the DNA methylation-free
state. A prediction of this hypothesis is that all CGI
promoters should be active during the waves of de novo
methylation that occur at the blastocyst stage and in
developing germ cells of the embryo (Morgan et al. 2005).
Indeed, studies of a small number of CGI promoters for
highly tissue-specific CGl-associated genes showed that
several are expressed in early embryonic cells (Daniels
et al. 1997). Large-scale analyses have strengthened this
relationship, showing that 90% of genes with CGI pro-
moters are expressed in the early embryo or testis
(Sequeira-Mendes et al. 2009). The idea that transcription
is antagonistic to CGI methylation also fits well with the
observation that the presence of RNAPII at CGIs, irre-
spective of gene activity, is associated with resistance
to DNA methylation in cancer (Takeshima et al. 2009).
DNA sequence-specific transcription factors also have
been implicated in preventing DNA methylation, as co-
operative binding of the transcription factors Spl, Nrf-1,
and YY1 in normal monocytes correlates with protection
from CGI methylation in leukemia cells (Gebhard et al.
2010). In this case, CGI promoters bound by these factors
also had the highest expression levels. A survey of human
CGlIs reinforced the correlation with transcription factor
binding (Straussman et al. 2009). Subsets of CGlIs that be-
come methylated or remain nonmethylated during de-
velopment were screened for DNA sequence motifs that
might influence this decision. An algorithm based on these
motifs, several of which were transcription factor-binding
sites, was able to predict which CGIs would be immune
from DNA methylation, again suggesting that the switch
is dependent on cis-acting factors.

There is evidently a close relationship between tran-
scription in the early embryo and lack of CGI methyla-
tion, but mechanisms that relate the two are unknown. It
has been proposed that origins of DNA replication (ORIs)
are the missing link. Based on evidence that CGIs often
colocalize with ORIs (Delgado et al. 1998), it was specu-
lated that intermediates in the process of replication
initiation lead to local exclusion of DNA methylation
and, over time, an altered base composition (Antequera
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and Bird 1999). A large fraction of CGlIs (83 %) colocalizes
with ORIs in ES cells (Sequeira-Mendes et al. 2009),
which may reflect the situation in the early embryo. A
causal relationship between ORI function and CGIs has
yet to be established, however, and therefore other kinds
of DNA-based metabolism might be responsible for
excluding DNA methylation from these regions. For
example, CGI promoters are typically loaded with poly-
merases that create short abortive transcripts (Core et al.
2008) even when the associated gene is inactive (Kanhere
et al. 2010). This “futile” transcription cycle may some-
how protect CGIs from the action of DNA methyltrans-
ferases, allowing these “silent” promoters to exclude DNA
methylation.

Another possible explanation for the immunity of most
CGIs to DNA methylation is that their signature chro-
matin mark, H3K4me3, interferes with DNA methyl-
transferase activity. Chromatin binding of Dnmt3L, a
partner protein of the de novo DNA methyltransferases
Dnmt3a and Dnmt3b, is inhibited by H3K4me3 (Ooi et al.
2007). Importantly, the ADD domains of both Dnmt3a
and Dnmt3b also fail to interact with H3K4me3 and are
catalytically less active in vitro on chromatin containing
this modification compared with unmodified or H3K9me3-
modified chromatin (Zhang et al. 2010). Multiple potential
mechanisms for preventing CGI methylation, including
those discussed above, are not mutually exclusive, but may
act in concert. It is noteworthy that a promoterless CpG-
rich sequence marked by Cfpl binding and H3K4me3 was
only partially immune to DNA methylation, suggesting
that this chromatin modification by itself is insufficient
(Thomson et al. 2010). It may be that a combination of
factors—including, perhaps, initiation of transcription—is
required to exclude DNA methylation from CGls.

Concluding remarks regarding CGI function

CGlIs represent a dispersed but coherent DNA sequence
class whose members function as genomic platforms for
regulating transcription at their associated promoters.
These properties depend on the shared features of their
DNA sequence; notably, CpG richness and a higher than
average G+C content. Paradoxically, CpG richness by
itself attracts protein complexes that promote H3K4me3
(Thomson et al. 2010), but G+C-rich DNA also recruits
H3K27me3 (Mendenhall et al. 2010). An equivocal activ-
ity state due to the coexistence of these contradictory
tendencies prevails at bivalent CGIs, particularly in ES
cells, where transcription decisions at many promoters
are pending (Azuara et al. 2006; Bernstein et al. 2006). Of
course, CpG is also the substrate for DNA methyltrans-
ferases, providing another opportunity for regulation. Why
should CGI DNA be poised to set up both active and
inactive chromatin structures? A possible reason is to
create tension between these opposing states and thus
facilitate decisive switching. A nonbiological analogy is
the spring in an electrical switch, which ensures that
a light can be flicked easily between on and off states that
are subsequently stable. A key part of such a “spring”
model is that features of the silent or active condition
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should be self-reinforcing once a decision has been made.
Biochemically, this can be achieved by positive feedback
on pathways that emphasize the chosen state, or by in-
hibition of opposing pathways. For example, H3K4me3
can attract the ING4 zinc finger protein, which indirectly
augments acetylation of histone H3 tails (Hung et al.
2009), thereby emphasizing the active chromatin configu-
ration. At the same time, this mark inhibits the action of
Dnmts, which might otherwise impose transcriptional
silence. It is likely that a cascade of related positive
and negative feedback loops ensures spring-like stability.
Indeed, the more we learn about the marking of chromatin,
the more loops of this kind are uncovered, suggesting that
consolidation of transcriptional states could be a major
role for these epigenetic systems. How is the decision
between activity or silence made? The evidence suggests
that DNA sequence-specific transcriptional regulators
are often ultimately responsible, and that their influence,
and that of the proteins they recruit, is dominant over
the tendencies imposed by CGI DNA. It is notable that
the ability of GC-rich DNA to recruit H3K4me3 and
H3K27me3 was detected using promoterless exogenous
DNA domains (Mendenhall et al. 2010; Thomson et al.
2010). Thus, factors that repress or activate transcription
appear to exaggerate the chromatin changes to which CGIs
are already prone. The construction of abrupt switches
based on biochemical processes that are often continuously
variable is a challenge in many biological processes. CGls
may provide one solution at the level of transcriptional
regulation.
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