4 research outputs found

    Home Program of Hip Abductor Exercises: Effect on Knee Joint Loading, Strength, Function and Pain in Persons with Knee Osteoarthritis

    Get PDF
    Background Hip abductor muscle weakness may result in impaired frontal-plane pelvic control during gait, leading to greater medial compartment loading in people with knee osteoarthritis (OA). Objective This study investigated the effect of an 8-week home strengthening program for the hip abductor muscles on knee joint loading (measured by the external knee adduction moment during gait), strength (force-generating capacity), and function and pain in individuals with medial knee OA. Design The study design was a nonequivalent, pretest-posttest, control group design. Setting Testing was conducted in a motor performance laboratory. Patients An a priori sample size calculation was performed. Forty participants with knee OA were matched for age and sex with a control group of participants without knee OA. Intervention Participants with knee OA completed a home hip abductor strengthening program. Measurements Three-dimensional gait analysis was performed to obtain peak knee adduction moments in the first 50% of the stance phase. Isokinetic concentric strength of the hip abductor muscles was measured using an isokinetic dynamometer. The Five-Times-Sit-to-Stand Test was used to evaluate functional performance. Knee pain was assessed with the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Results Following the intervention, the OA group demonstrated significant improvement in hip abductor strength, but not in the knee adduction moment. Functional performance on the sit-to-stand test improved in the OA group compared with the control group. The OA group reported decreased knee pain after the intervention. Limitations Gait strategies that may have affected the knee adduction moment, including lateral trunk lean, were not evaluated in this study. Conclusions Hip abductor strengthening did not reduce knee joint loading but did improve function and reduce pain in a group with medial knee OA

    Comparing a Novel Neuroanimation Experience to Conventional Therapy for High-Dose Intensive Upper-Limb Training in Subacute Stroke: The SMARTS2 Randomized Trial

    Get PDF
    BACKGROUND Evidence from animal studies suggests that greater reductions in poststroke motor impairment can be attained with significantly higher doses and intensities of therapy focused on movement quality. These studies also indicate a dose-timing interaction, with more pronounced effects if high-intensity therapy is delivered in the acute/subacute, rather than chronic, poststroke period. OBJECTIVE To compare 2 approaches of delivering high-intensity, high-dose upper-limb therapy in patients with subacute stroke: a novel exploratory neuroanimation therapy (NAT) and modified conventional occupational therapy (COT). METHODS A total of 24 patients were randomized to NAT or COT and underwent 30 sessions of 60 minutes time-on-task in addition to standard care. The primary outcome was the Fugl-Meyer Upper Extremity motor score (FM-UE). Secondary outcomes included Action Research Arm Test (ARAT), grip strength, Stroke Impact Scale hand domain, and upper-limb kinematics. Outcomes were assessed at baseline, and days 3, 90, and 180 posttraining. Both groups were compared to a matched historical cohort (HC), which received only 30 minutes of upper-limb therapy per day. RESULTS There were no significant between-group differences in FM-UE change or any of the secondary outcomes at any timepoint. Both high-dose groups showed greater recovery on the ARAT (7.3 ± 2.9 points; P = .011) but not the FM-UE (1.4 ± 2.6 points; P = .564) when compared with the HC. CONCLUSIONS Neuroanimation may offer a new, enjoyable, efficient, and scalable way to deliver high-dose and intensive upper-limb therapy
    corecore