114 research outputs found

    Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice

    Get PDF
    The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.This work was supported by a University of Cambridge/Wellcome Trust Interdisciplinary fellowship (to C.B.M.). Further support was provided by the Francis Crick Institute, which receives its core funding from Cancer Research UK (Award FC001134), the UK Medical Research Council (Award FC001134), and the Wellcome Trust (Award FC001134)

    A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes

    Get PDF
    The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection

    A hybrid surface tension seal for pneumatic and hydraulic microactuators

    No full text
    Recent research revealed that microactuators driven by pressurized fluids are able to generate high power and force densities at microscale. One of the main technological barriers in the development of these actuators is the fabrication low friction seals. This paper presents a novel scalable seal technology, which resists the actuation pressure relying on a combination of a clearance seal and a surface tension seal. This approach allows to seal pressures of more than 800 kPa without leakage. The seal is tested on an actuator with a bore of 0.8 mm2 and a length of 13 mm, which was able to generate forces up to 0.32 N. © 2008 Springer-Verlag

    Integrated high pressure microhydraulic actuation and control for surgical instruments

    No full text
    To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°. © 2012 Springer Science+Business Media, LLC

    Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries

    No full text
    Li-ion batteries based on Ni-rich layered cathodes are the state-of-the-art technology for electric vehicles; however, batteries using these advanced materials suffer from rapid performance fading. In this work, we report a critical turning point during the aging of graphite/LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells, after which the degradation is significantly accelerated. This turning point was identified using differential voltage analysis (DVA) applied to standard two-electrode data, which shows that graphite becomes progressively less lithiated, as confirmed by operando long-duration X-ray diffraction, and therefore has a higher electrochemical potential at the end of charge. This increase leads to a proportional increase in the cathode potential, and an accelerated impedance increase is observed from this point. This mechanism is expected to be universal for the vast majority of Li-ion battery chemistries, particularly for Ni-rich cathodes, whose degradation is extremely sensitive to the upper cutoff voltage, and our work provides fundamental guidelines for developing effective countermeasures

    Corrugated carbon nanotube microstructures with geometrically tunable compliance

    No full text
    Deterministic organization of nanostructures into microscale geometries is essential for the development of materials with novel mechanical, optical, and surface properties. We demonstrate scalable fabrication of 3D corrugated carbon nanotube (CNT) microstructures, via an iterative sequence of vertically aligned CNT growth and capillary self-assembly. Vertical microbellows and tilted microcantilevers are created over large areas, and these structures can have thin walls with aspect ratios exceeding 100:1. We show these structures can be used as out-of-plane microsprings with compliance determined by the wall thickness and number of folds. © 2011 American Chemical Society
    • …
    corecore