182 research outputs found

    What do iris observations of Mg II k tell us about the solar plage chromosphere?

    Full text link
    We analyze observations from the Interface Region Imaging Spectrograph of the Mg II k line, the Mg II UV subordinate lines, and the O I 135.6 nm line to better understand the solar plage chromosphere. We also make comparisons with observations from the Swedish 1 m Solar Telescope of the H{\alpha} line, the Ca II 8542 line, and Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the coronal 19.3 nm line. To understand the observed Mg II profiles, we compare these observations to the results of numerical experiments. The single-peaked or flat-topped Mg II k profiles found in plage imply a transition region at a high column mass and a hot and dense chromosphere of about 6500 K. This scenario is supported by the observed large-scale correlation between moss brightness and filled-in profiles with very little or absent self-reversal. The large wing width found in plage also implies a hot and dense chromosphere with a steep chromospheric temperature rise. The absence of emission in the Mg II subordinate lines constrain the chromospheric temperature and the height of the temperature rise while the width of the O I 135.6 nm line sets a limit to the non-thermal velocities to around 7 km/s

    What causes the high apparent speeds in chromospheric and transition region spicules on the Sun?

    Full text link
    Spicules are the most ubuiquitous type of jets in the solar atmosphere. The advent of high-resolution imaging and spectroscopy from the Interface Region Imaging Spectrograph (IRIS) and ground-based observatories has revealed the presence of very high apparent motions of order 100-300 km/s in spicules, as measured in the plane of the sky. However, line-of-sight measurements of such high speeds have been difficult to obtain, with values deduced from Doppler shifts in spectral lines typically of order 30-70 km/s. In this work we resolve this long-standing discrepancy using recent 2.5D radiative MHD simulations. This simulation has revealed a novel driving mechanism for spicules in which ambipolar diffusion resulting from ion-neutral interactions plays a key role. In our simulation we often see that the upward propagation of magnetic waves and electrical currents from the low chromosphere into already existing spicules can lead to rapid heating when the currents are rapidly dissipated by ambipolar diffusion. The combination of rapid heating and the propagation of these currents at Alfv\'enic speeds in excess of 100 km/s leads to the very rapid apparent motions, and often wholesale appearance, of spicules at chromospheric and transition region temperatures. In our simulation, the observed fast apparent motions in such jets are actually a signature of a heating front, and much higher than the mass flows, which are of order 30-70 km/s. Our results can explain the behavior of transition region "network jets" and the very high apparent speeds reported for some chromospheric spicules.Comment: 8 pages, 5 figures, accepted for publication in ApJ Letter

    Numerical Simulations of Coronal Heating through Footpoint Braiding

    Full text link
    Advanced 3D radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated area, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop shaped structures, and moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows time scales of the order of 2 minutes in one model and 1 minutes in the other, higher-resolution, model.Comment: 20 pages, accepted by Ap

    Chromospheric thermodynamic conditions from inversions of complex Mg II h & k profiles observed in flares

    Get PDF
    The flare activity of the Sun has been studied for decades, using both space- and ground-based telescopes. The former have mainly focused on the corona, while the latter have mostly been used to investigate the conditions in the chromosphere and photosphere. The Interface Region Imaging Spectrograph (IRIS) instrument has served as a gateway between these two cases, given its capability to observe quasi-simultaneously the corona, the transition region, and the chromosphere using different spectral lines in the near- and far-ultraviolet ranges. IRIS thus provides unique diagnostics to investigate the thermodynamics of flares in the solar atmosphere. In particular, the Mg II h&k and the Mg II UV triplet lines provide key information about the thermodynamics of low to upper chromosphere, while the C II 1334 & 1335 Å lines cover the upper-chromosphere and low transition region. The Mg II h&k and the Mg II UV triplet lines show a peculiar, pointy shape before and during the flare activity. The physical interpretation, i.e., the physical conditions in the chromosphere, that can explain these profiles has remained elusive. In this paper, we show the results of a non-LTE inversion of such peculiar profiles. To better constrain the atmospheric conditions, the Mg II h&k and the Mg II UV triplet lines are simultaneously inverted with the C II 1334 & 1335 Å lines. This combined inversion leads to more accurate derived thermodynamic parameters, especially the temperature and the turbulent motions (micro-turbulence velocity). We use an iterative process that looks for the best fit between the observed profile and a synthetic profile obtained by considering non-local thermodynamic equilibrium and partial frequency redistribution of the radiation due to scattered photons. This method is computationally rather expensive (≈6 CPU-hour/profile). Therefore, we use the k-means clustering technique to identify representative profiles and associated representative model atmospheres. By inverting the representative profiles with the most advanced inversion code (STiC), in addition to recover the main physical parameters, we are able to conclude that these unique, pointy profiles are associated with a large gradient in the line-of-sight velocity along the optical depth in the high chromosphere

    The Effects of Spatio-temporal Resolution on Deduced Spicule Properties

    Full text link
    Spicules have been observed on the sun for more than a century, typically in chromospheric lines such as H-alpha and Ca II H. Recent work has shown that so-called 'type II' spicules may have a role in providing mass to the corona and the solar wind. In chromospheric filtergrams these spicules are not seen to fall back down, and they are shorter-lived and more dynamic than the spicules that have been classically reported in ground-based observations. Observations of type II spicules with Hinode show fundamentally different properties from what was previously measured. In earlier work we showed that these dynamic type II spicules are the most common type, a view that was not properly identified by early observations.The aim of this work is to investigate the effects of spatio-temporal resolution in the classical spicule measurements. Making use of Hinode data degraded to match the observing conditions of older ground-based studies, we measure the properties of spicules with a semi-automated algorithm. These results are then compared to measurements using the original Hinode data. We find that degrading the data has a significant effect on the measured properties of spicules. Most importantly, the results from the degraded data agree well with older studies (e.g. mean spicule duration more than 5 minutes, and upward apparent velocities of about 25 km/s). These results illustrate how the combination of spicule superposition, low spatial resolution and cadence affect the measured properties of spicules, and that previous measurements can be misleading.Comment: Accepted for publication in ApJ. 5 pages, 3 figures. Movies of figures 1 and 3 available via Data Conservanc

    Recovering thermodynamics from spectral profiles observed by IRIS (II): improved calculation of the uncertainties based on Monte Carlo experiments

    Full text link
    Observations by the Interface Region Imaging Spectrograph (IRIS) in the Mg II h & k spectral lines have provided a new diagnostic window towards the knowledge of the complex physical conditions in the solar chromosphere. Theoretical efforts focused on understanding the behavior of these lines have allowed us to obtain a better and more accurate vision of the chromosphere. These efforts include forward modeling, numerical simulations, and inversions. In this paper, we focus our attention on the uncertainties associated with the thermodynamic model atmosphere obtained after the inversion of the Mg II h & k lines. We have used ~ 50;000 synthetic representative profiles of the IRIS2 database to characterize the most important source of uncertainties in the inversion process, viz.: the inherent noise of the observations, the random initialization of process, and the selection criteria in a high-dimensional space. We have applied a Monte Carlo approach to this problem. Thus, for a given synthetic representative profile, we have created five randomized noise realizations (representative of the most popular exposure times in the IRIS observations), and inverted these profiles five times with different inversion initializations. The resulting 25 inverted profiles, fits to noisy data, and model atmospheres are then used to determine the uncertainty in the model atmosphere, based on the standard deviation and empirical selection criteria for the goodness of fit. With this approach, the new uncertainties of the models available in the IRIS2 database are more reliable at the optical depths where the Mg II h & k lines are sensitive to changes in the thermodynamics.Comment: 13 pages, 8 figures, and 1 tabl
    • …
    corecore