328 research outputs found

    β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations

    Get PDF
    Background: The NF-kappa B signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic beta(2)-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic beta(2)-adrenergic receptors and the TNF-alpha induced inflammatory gene program. Methods: Proinflammatory conditions were generated by the administration of TNF-alpha. Genes that are susceptible to astrocytic crosstalk between beta(2)-adrenergic receptors (stimulated by clenbuterol) and TNF-alpha were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-alpha in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-alpha administration. Results: Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic beta(2)-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of beta(2)-adrenergic receptor agonists and TNF-alpha on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-alpha co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. Conclusions: Our results show that astrocytic beta(2)-adrenergic receptors are potent regulators of astrocytic TNF-alpha-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic beta(2)-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses

    Dietary patterns in clinical subtypes of multiple sclerosis: an exploratory study

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>Multiple sclerosis is a neurodegenerative disorder with a wide range in disease course severity. Many factors seem to be implicated in multiple sclerosis disease course, and diet has been suggested to play a role. Because limited data is present in the literature it was investigated whether variations in dietary intake may be related to the severity of the disease course in multiple sclerosis.</p> <p>Methods</p> <p>Using a food diary during 14 days, the dietary intake of 23 nutrients and vitamins was measured in patients with primary progressive (n = 21), secondary progressive (n = 32), and benign multiple sclerosis (n = 27) and compared to each other. The intake measured was also compared to the intake of the Dutch population and to the recommended daily allowance.</p> <p>Results</p> <p>Compared to the other MS groups, the secondary progressive MS patients had a lower intake of magnesium, calcium and iron. The total group of MS patients had, compared to the Dutch population, a lower intake of folate, magnesium and copper and a lower energy intake. Compared to the daily recommended allowance, the MS patients had a lower than recommended intake of folic acid, magnesium, zinc and selenium.</p> <p>Conclusion</p> <p>Magnesium, calcium and iron intake may possibly be related to MS disease progression, and should receive further attention. This is important because no effective neuroprotective treatment for MS patients is available.</p

    Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis

    Get PDF
    Objectives Th17 cells are an effector T-cell population that plays a role in chronic inflammatory conditions and is dependent on IL-23 for their survival and expansion. More recently, a genetic association was discovered between polymorphisms in the gene coding for the IL-23 receptor and spondyloarthritis. This study aimed to evaluate the role of Th17-associated cytokines in spondyloarthritis pathogenesis by measuring their levels in the joints and circulation as well as correlating them with disease activity parameters. Methods Paired synovial fluid (SF), serum and synovial biopsies were obtained from 30 non-PsA (psoriatic arthritis) spondyloarthritis, 22 PsA and 22 rheumatoid arthritis (RA) patients. IL-17, IL-23 and CCL20 were measured by ELISA in the SF and serum of patients and correlated with systemic and local parameters of disease activity. Results Concentrations of CCL20, a major Th17-attracting chemokine, tended to be higher in the joints of RA than in spondyloarthritis patients. Interestingly, levels of CCL20 were markedly higher in SF as opposed to serum. In addition, there was a remarkable association between the expression of the Th17 cytokine system and the presence of intimal lining layer hyperplasia in RA. Also in the serum, there was a tendency for higher IL-23 levels in RA, which correlated strongly with disease activity parameters. Conclusions Th17-related cytokines are expressed in joints of spondyloarthritis as well as RA patients. IL-23 levels, however, correlate with disease activity parameters in RA only. These results point towards a differential regulation of the Th17 cytokine system in spondyloarthritis compared with RA

    Reduced Creatine Kinase B Activity in Multiple Sclerosis Normal Appearing White Matter

    Get PDF
    Background: Two studies using 31 P-magnetic resonance spectroscopy (MRS) reported enhanced phosphocreatine (PCr) levels in normal appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but this finding could not be properly explained. Methodology/Principal Findings: We performed 31 P-MRS and 1 H-MRS in the NAWM in 36 subjects, including 17 with progressive MS, 9 with benign MS, and 10 healthy controls. Compared to controls, PCr/b-ATP and PCr/total 31 P ratios were significantly increased in subjects with progressive MS, but not with benign MS. There was no correlation between PCr ratios and the N-acetylaspartate/creatine ratio, suggesting that elevated PCr levels in NAWM were not secondary to axonal loss. In the central nervous system, PCr is degraded by creatine kinase B (CK-B), which in the white matter is confined to astrocytes. In homogenates of NAWM from 10 subjects with progressive MS and 10 controls without central nervous system disease, we measured CK-B levels with an ELISA, and measured its activity with an enzymatic assay kit. Compared to controls, both CK-B levels and activity were decreased in subjects with MS (22.41 versus 46.28 mg/ml; p = 0.0007, and 2.89 versus 7.76 U/l; p,0.0001). Conclusions/Significance: Our results suggest that PCr metabolism in the NAWM in MS is impaired due to decreased CK-B levels. Our findings raise the possibility that a defective PCr metabolism in astrocytes might contribute to the degeneratio

    Simvastatin inhibits interferon-γ-induced MHC class II up-regulation in cultured astrocytes

    Get PDF
    Based on their potent anti-inflammatory properties and a preliminary clinical trial, statins (HMG-CoA reductase inhibitors) are being studied as possible candidates for multiple sclerosis (MS) therapy. The pathogenesis of MS is unclear. One theory suggests that the development of autoimmune lesions in the central nervous system may be due to a failure of endogenous inhibitory control of MHC class II expression on astrocytes, allowing these cells to adapt an interferon (IFN)-γ-induced antigen presenting phenotype. By using immunocytochemistry in cultured astrocytes derived from newborn Wistar rats we found that simvastatin at nanomolar concentrations inhibited, in a dose-response fashion, up to 70% of IFN-γ-induced MHC class II expression. This effect was reversed by the HMG-CoA reductase product mevalonate. Suppression of the antigen presenting function of astrocytes might contribute to the beneficial effects of statins in MS

    High natural killer cell number might identify stroke patients at risk of developing infections

    Get PDF
    Objective: To investigate early changes in leukocyte subsets and autonomic function as predictors of the development of poststroke infections. Methods: We assessed the time course of leukocyte subsets in the blood of 59 patients with acute ischemic stroke. We divided the patients into 2 groups: those who developed infections during the first 7 days after stroke onset and those who did not. We measured urinary norepinephrine and epinephrine concentrations and pulse rate variability indices within 24 hours of admission. Results: We found that the number of circulating natural killer (NK) cells within the first hours after stroke was higher in stroke patients who developed infections (mean 435 cells/mL; 95% confidence interval [CI] 321-588) than in stroke patients who did not develop infections (mean 236 cells/mL; 95% CI 186-300; p = 0.001). This was followed by a decrease in all lymphocyte subsets from admission to day 1, varying between 22% and 40%, which was not seen in patients without poststroke infection (mean increase varied between 2% and 23%; all p <0.005). In the group that developed infections, pulse rate variability revealed a decreased high frequency component. These findings all remained significant after adjustment for age and stroke volume. Conclusions: High circulating NK cell count within the first hours after ischemic stroke onset followed by a drop in all lymphocyte subsets identified patients who developed infections and may be caused by a sympathovagal imbalance with sympathetic overweight. These findings need to be validated in larger studies

    Optimizing cutoff scores for the Barthel Index and the modified Rankin Scale for defining outcome in acute stroke trials

    Get PDF
    Background and Purpose - There is little agreement on how to assess outcome in acute stroke trials. Cutoff scores for the Barthel Index (BI) and modified Rankin Scale (mRS) are frequently arbitrarily chosen to dichotomize favorable and unfavorable outcome. We investigated sensitivity and specificity of BI cutoff scores in relation to the mRS to obtain the optimal corresponding BI and mRS scores. Methods - BI and mRS scores were collected from 1034 ischemic stroke patients. Sensitivity and specificity were calculated for BI cutoff scores from 45 to 100 in mRS score 1, 2, and 3 and were plotted in receiver operator characteristic (ROC) curves. Results - The cutoff scores for the BI with the highest sum of sensitivity and specificity were 95 (sensitivity 85.6%; specificity 91.7%), 90 (sensitivity 90.7%; specificity 88.1%), and 75 ( sensitivity 95.7%; specificity, 88.5%) for, respectively, mRS 1, 2, and 3. The area under the ROC curve was 0.933 in mRS 1, 0.960 in mRS 2, and 0.979 in mRS 3. Conclusions - The optimal cutoff scores for the BI were 95 for mRS 1, 90 for mRS 2, and 75 for mRS 3. For future acute stroke trials that assess stroke outcome with the BI and mRS, we recommend the use of these BI cutoff score(s) with the corresponding mRS cutoff score(s), to ensure the use of consistent and uniform end points

    The Role of Cerebral Hypoperfusion in Multiple Sclerosis (ROCHIMS) Trial in Multiple Sclerosis:Insights From Negative Results

    Get PDF
    Background:Accumulating evidence indicates that mitochondrial energy failure is involved in the progressive axonal degeneration in multiple sclerosis (MS). In patients with MS, it has been shown that both levels of N-acetylaspartate (NAA), which is a marker of axonal mitochondrial energy, and cerebral blood flow (CBF) are reduced in cerebral normal appearing white matter (NAWM). The latter is likely due to the vasoconstrictive action of endothelin-1 (ET-1) produced by reactive astrocytes, which is triggered by local proinflammatory cytokines. A preliminary study in patients with MS showed that CBF could be restored to normal values after a single dose of 62.5 mg of the ET-1 antagonist bosentan. Objective:To investigate whether restoring CBF in patients with relapsing remitting MS (RRMS) increases levels of NAA in cerebral NAWM and improves clinical symptoms. Methods:27 RRMS patients were included in a 4 weeks proof-of-concept, randomized, double-blind placebo-controlled trial (ROCHIMS) to investigate whether bosentan 62.5 mg twice daily could increase the NAA/creatine (NAA/Cr) ratio in NAWM of the centrum semiovale. Magnetic resonance imaging (MRI) assessing CBF and NAA/Cr, and clinical evaluations were performed at baseline and at end of study. Separately from the clinical trial, 10 healthy controls underwent the same baseline multimodal brain MRI protocol as the MS patients. Results:Eleven patients in the bosentan arm and thirteen patients in the placebo arm completed the study. Bosentan did not increase CBF. However, we found that CBF in the patients was not different from that of the healthy controls. There were no effects on NAA levels and clinical symptoms. Conclusions:Our study showed that CBF in RRMS patients is not always decreased and that bosentan has no effect when CBF values are within the normal range. We hypothesize that in our patients there was no significant astrocytic production of ET-1 because they had a mild disease course, with minimal local inflammatory activity. Future studies with bosentan in MS should focus on patients with elevated ET-1 levels in cerebrospinal fluid or blood
    • …
    corecore