15,249 research outputs found

    Electroweak lights from Dark Matter annihilations

    Full text link
    The energy spectra of Standard Model particles originated from Dark Matter annihilations can be significantly altered by the inclusion of electroweak gauge boson radiation from the final state. A situation where this effect is particularly important is when a Majorana Dark Matter particle annihilates into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. I will discuss the impact of this effect on the fluxes of stable particles resulting from the Dark Matter annihilations, which are relevant for Dark Matter indirect searches.Comment: 4 pages, 2 figures. Contribution to the conference proceedings of TAUP 2011, Munich - Germany (5-9 September 2011

    HST Proper Motion confirms the optical identification of the nearby pulsar PSR 1929+10

    Get PDF
    We report on the proper motion measurement of the proposed optical counterpart of the X-ray/radio pulsar PSR 1929+10. Using images obtained with the HST/STIS (average epoch 2001.73) we computed a yearly displacement of +97 +/- 1 mas yr^{-1} in RA and +46 +/- 1 mas yr^{-1} in Dec since the epoch (1994.52) of the original HST/FOC detection. Both the magnitude and direction of the optical proper motion components are found to be fully consistent with the most recent VLBA radio measurements. This result provides an unambiguous confirmation of the pulsar optical identification. In addition, we have used the combined STIS/FOC datasets to derive information on the pulsar spectrum, which seems characterized by a power law component, apparently unrelated to the X-ray emission.Comment: 12 pages, 3 figures, submitted to ApJ Letter

    Polymers as compressible soft spheres

    Full text link
    We consider a coarse-grained model in which polymers under good-solvent conditions are represented by soft spheres whose radii, which should be identified with the polymer radii of gyrations, are allowed to fluctuate. The corresponding pair potential depends on the sphere radii. This model is a single-sphere version of the one proposed in Vettorel et al., Soft Matter 6, 2282 (2010), and it is sufficiently simple to allow us to determine all potentials accurately from full-monomer simulations of two isolated polymers (zero-density potentials). We find that in the dilute regime (which is the expected validity range of single-sphere coarse-grained models based on zero-density potentials) this model correctly reproduces the density dependence of the radius of gyration. However, for the thermodynamics and the intermolecular structure, the model is largely equivalent to the simpler one in which the sphere radii are fixed to the average value of the radius of gyration and radiiindependent potentials are used: for the thermodynamics there is no advantage in considering a fluctuating sphere size.Comment: 21 pages, 7 figure

    Phase diagram of mixtures of colloids and polymers in the thermal crossover from good to θ\theta solvent

    Full text link
    We determine the phase diagram of mixtures of spherical colloids and neutral nonadsorbing polymers in the thermal crossover region between the θ\theta point and the good-solvent regime. We use the generalized free-volume theory (GFVT), which turns out to be quite accurate as long as q=Rg/Rc≲1q = R_g/R_c\lesssim 1 (RgR_g is the radius of gyration of the polymer and RcR_c is the colloid radius). Close to the θ\theta point the phase diagram is not very sensitive to solvent quality, while, close to the good-solvent region, changes of the solvent quality modify significantly the position of the critical point and of the binodals. We also analyze the phase behavior of aqueous solutions of charged colloids and polymers, using the extension of GFVT proposed by Fortini et al., J. Chem. Phys. 128, 024904 (2008)

    Tracheocutaneous fistula in patients undergoing supracricoid partial laryngectomy: the role of chronic aspiration

    Get PDF
    The aim of the present retrospective controlled study was to analyse and compare risk factors for tracheocutaneous fistula in patients who received tracheostomy after supracricoid partial laryngectomy with those who received tracheostomy for other causes. We enrolled 39 patients with tracheocutaneous fistulas who were divided into two groups. The first received temporary tracheostomy for supracricoid partial laryngectomies (n = 21), while the control group consisted of patients who received temporary tracheostomy for other causes (n = 18). Risk factors believed to play a role in the pathogenesis of tracheocutaneous fistula were examined including advanced age, cardiopathy, local infections, radiotherapy, elevated body mass index, malnutrition, decannulation time and aspiration grade. The Leipzig and Pearson scale score was significantly higher in the supracricoid partial laryngectomy group (p = 0.006 and 0.031 for univariate and multivariate analyses, respectively). The penetration/aspiration scale score was significantly higher in the supracricoid partial laryngectomy group as determined by univariate analysis (p = 0.014). The decannulation time was significantly lower in the supracricoid partial laryngectomy group (p = 0.004 and 0.0004 for univariate and multivariate analyses, respectively). The number of surgical closures for tracheocutaneous fistula was significantly higher in the supracricoid partial laryngectomy group by univariate analysis (p = 0.027). These results suggest that chronic aspiration and related cough may be important pathogenic factors for tracheocutaneous fistula and could be responsible for the significantly higher rates of closure failure in patients after supracricoid partial laryngectomy

    The distribution of Omega_k from the scale-factor cutoff measure

    Full text link
    Our universe may be contained in one among a diverging number of bubbles that nucleate within an eternally inflating multiverse. A promising measure to regulate the diverging spacetime volume of such a multiverse is the scale-factor cutoff, one feature of which is bubbles are not rewarded for having a longer duration of slow-roll inflation. Thus, depending on the landscape distribution of the number of e-folds of inflation among bubbles like ours, we might hope to measure spacetime curvature. We study a recently proposed cartoon model of inflation in the landscape and find a reasonable chance (about ten percent) that the curvature in our universe is well above the value expected from cosmic variance. Anthropic selection does not strongly select for curvature as small as is observed (relative somewhat larger values), meaning the observational bound on curvature can be used to rule out landscape models that typically give too little inflation.Comment: 14 pages, 7 figure

    Consistent coarse-graining strategy for polymer solutions in the thermal crossover from Good to Theta solvent

    Full text link
    We extend our previously developed coarse-graining strategy for linear polymers with a tunable number n of effective atoms (blobs) per chain [D'Adamo et al., J. Chem. Phys. 137, 4901 (2012)] to polymer systems in thermal crossover between the good-solvent and the Theta regimes. We consider the thermal crossover in the region in which tricritical effects can be neglected, i.e. not too close to the Theta point, for a wide range of chain volume fractions Phi=c/c* (c* is the overlap concentration), up to Phi=30. Scaling crossover functions for global properties of the solution are obtained by Monte-Carlo simulations of the Domb-Joyce model. They provide the input data to develop a minimal coarse-grained model with four blobs per chain. As in the good-solvent case, the coarse-grained model potentials are derived at zero density, thus avoiding the inconsistencies related to the use of state-dependent potentials. We find that the coarse-grained model reproduces the properties of the underlying system up to some reduced density which increases when lowering the temperature towards the Theta state. Close to the lower-temperature crossover boundary, the tetramer model is accurate at least up to Phi<10, while near the good-solvent regime reasonably accurate results are obtained up to Phi<2. The density region in which the coarse-grained model is predictive can be enlarged by developing coarse-grained models with more blobs per chain. We extend the strategy used in the good-solvent case to the crossover regime. This requires a proper treatment of the length rescalings as before, but also a proper temperature redefinition as the number of blobs is increased. The case n=10 is investigated. Comparison with full-monomer results shows that the density region in which accurate predictions can be obtained is significantly wider than that corresponding to the n=4 case.Comment: 21 pages, 14 figure
    • …
    corecore