40 research outputs found

    Hyperbaric exposure in rodents with noninvasive imaging assessment of decompression bubbles: A scoping review protocol

    Get PDF
    Hyperbaric pressure experiments have provided researchers with valuable insights into the effects of pressure changes, using various species as subjects. Notably, extensive work has been done to observe rodents subjected to hyperbaric pressure, with differing imaging modalities used as an analytical tool. Decompression puts subjects at a greater risk for injury, which often justifies conducting such experiments using animal models. Therefore, it is important to provide a broad view of previously utilized methods for decompression research to describe imaging tools available for researchers to conduct rodent decompression experiments, to prevent duplicate experimentation, and to identify significant gaps in the literature for future researchers. Through a scoping review of published literature, we will provide an overview of decompression bubble information collected from rodent experiments using various non-invasive methods of ultrasound for decompression bubble assessment. This review will adhere to methods outlined by the Joanna Briggs Institute Manual for Evidence Synthesis and be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR). Literature will be obtained from the PubMed, Embase, and Scopus databases. Extracted sources will first be sorted to a list for inclusion based on title and abstract. Two independent researchers will then conduct full-text screening to further refine included papers to those relevant to the scope. The final review manuscript will cover methods, data, and findings for each included publication relevant to non-invasive in vivo bubble imaging

    Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model

    Get PDF
    The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer (n=48). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images

    Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent

    Get PDF
    Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent

    Cavitation Enhancement Increases the Efficiency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications

    Get PDF
    One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications

    An open-source framework for synthetic post-dive Doppler ultrasound audio generation

    Get PDF
    Doppler ultrasound (DU) measurements are used to detect and evaluate venous gas emboli (VGE) formed after decompression. Automated methodologies for assessing VGE presence using signal processing have been developed on varying real-world datasets of limited size and without ground truth values preventing objective evaluation. We develop and report a method to generate synthetic post-dive data using DU signals collected in both precordium and subclavian vein with varying degrees of bubbling matching field-standard grading metrics. This method is adaptable, modifiable, and reproducible, allowing for researchers to tune the produced dataset for their desired purpose. We provide the baseline Doppler recordings and code required to generate synthetic data for researchers to reproduce our work and improve upon it. We also provide a set of pre-made synthetic post-dive DU data spanning six scenarios representing the Spencer and Kisman-Masurel (KM) grading scales as well as precordial and subclavian DU recordings. By providing a method for synthetic post-dive DU data generation, we aim to improve and accelerate the development of signal processing techniques for VGE analysis in Doppler ultrasound

    Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent

    No full text
    Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent
    corecore