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Abstract

Doppler ultrasound (DU) measurements are used to detect and evaluate venous gas emboli

(VGE) formed after decompression. Automated methodologies for assessing VGE pres-

ence using signal processing have been developed on varying real-world datasets of limited

size and without ground truth values preventing objective evaluation. We develop and report

a method to generate synthetic post-dive data using DU signals collected in both precordium

and subclavian vein with varying degrees of bubbling matching field-standard grading met-

rics. This method is adaptable, modifiable, and reproducible, allowing for researchers to

tune the produced dataset for their desired purpose. We provide the baseline Doppler

recordings and code required to generate synthetic data for researchers to reproduce our

work and improve upon it. We also provide a set of pre-made synthetic post-dive DU data

spanning six scenarios representing the Spencer and Kisman-Masurel (KM) grading scales

as well as precordial and subclavian DU recordings. By providing a method for synthetic

post-dive DU data generation, we aim to improve and accelerate the development of signal

processing techniques for VGE analysis in Doppler ultrasound.

Introduction

Decompression sickness (DCS) can occur after the human body experiences depressurization

leading to the formation of gas bubbles. The formation and growth of these bubbles are under-

stood to be the primary mechanism of DCS through a complex physiological cascade inducing

symptoms ranging from skin rash to neurological degradation, and even death [1, 2].

Scuba divers breathe pressurized gas mixtures, of which the inert gases may saturate the tis-

sues at depth. During ascent, the pressure gradient reverses leading to ‘off-gassing’ of supersat-

urated tissues and generation of bubbles also known as venous gas emboli (VGE). Controlled

ascent, often using decompression ‘stops’, is used to mitigate DCS by allowing lung filtration
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to remove any evolved gas from the blood pool without excessive bubble retention [3]. These

ascent profiles are determined using decompression models, which use DCS outcomes as the

measurable endpoint. Due to the low incidence of DCS (<1%), decompression algorithm

development requires large sample sizes that are not always feasible to provide [4, 5]. There-

fore, VGE detection using Doppler ultrasound (DU) has been proposed as a supplemental

endpoint for DCS modeling and DCS assessment.

Doppler ultrasound functions by transmitting an acoustic wave and receiving the backscat-

tered signal. Ultrasound reflected off moving scatterers produces a frequency shift in the

received signal that falls within the auditory range and thus is typically recorded as a one-

dimensional audio signal [6, 7]. Due to the high acoustic impedance mismatch between gas

and liquid, VGE are highly echogenic, producing distinct sounds that can be distinguished

from cardiac motion or blood flow, and are often described as a ‘ping’ or ‘chirp’. The amount

of VGE load post-dive is scored commonly using the Spencer (Table 1) and Kisman-Masurel

(KM) (Table 2) grading scales by a trained rater [7–9]. An increasing level of VGE grade has

been associated with increased DCS risk, making ultrasound monitoring a valuable tool in

assessing human response to diving [10].

Despite its common application in decompression research, manual rating of DU audio is

time-consuming, dependent on training, and subject to inter- and intra-rater variability [11].

Automated analysis methods for post-decompression Doppler ultrasound have been previ-

ously developed, however progress is inhibited by a lack of standardized datasets allowing for

algorithm development, evaluation, and comparison [12, 13].

Recently, a dataset of post-dive Doppler recordings was released for the purposes of auto-

mated VGE extraction and grading algorithm development [14]. Several signal-separation

algorithms have been explored using this data such as adaptive empirical mode decomposition

and complete ensemble empirical mode decomposition [15, 16]. Even with its clear usefulness

for the development of new VGE analysis methodologies, this real-world dataset from

Table 1. Definition of the Spencer code used for assessing venous gas emboli in post-dive Doppler ultrasound

recordings, reproduced from [7].

Spencer

Score

Description

0 Complete lack of bubble signals

1 Occasional bubble signal discernible with the cardiac motion signal, with majority of cardiac

periods free of bubbles

2 Many but less than half of the cardiac periods contain bubble signals, singularly or in groups

3 All of the cardiac periods contain showers or single bubble signals, but not dominating or

overriding the cardiac motion signals

4 Maximum detectable bubble signal sounding continuously throughout systole and diastole of every

cardiac period, and overriding the amplitude of the normal cardiac signals

https://doi.org/10.1371/journal.pone.0284922.t001

Table 2. Definition of the Kisman-Masurel code used for assessing venous gas emboli in post-dive Doppler ultrasound recordings, reproduced from [7].

KM

Score

Bubbles per cardiac

cycle

Percentage of cardiac cycles at rest with detectable

bubbles

Number of cardiac cycles with bubbles after

motion

Amplitude

0 0 0% 0 No bubbles

discernible

1 1–2 1–10% 1–2 Barely perceptible

2 Several, 3–8 10–50% 3–5 Moderate amplitude

3 Rolling drumbeat > 9 50–99% 6–10 Loud

4 Continuous sound 100% 10+ Maximal

https://doi.org/10.1371/journal.pone.0284922.t002
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Pierleoni et al. (2019) still exhibits certain limitations, such as limited dataset size (30 record-

ings) and use of a fetal Doppler system (FD1 2-MHz Doppler probe, Huntleigh Ltd, Cardiff,

UK) which is not standard for all decompression research. The limited dataset recordings only

provide grades that range from 0–2.5 on the Extended Spencer Scales, missing out on higher

grades of VGE that relate to greater DCS risk. Furthermore, the data labels are of an ordinal

scale produced by human graders, thus no ground truth is available providing separate VGE

and cardiac signals. This requires algorithm assessment to be performed based on grade pre-

diction accuracy which can be subject to bias, exacerbated by the limited data size.

These issues presented are not unique to post-dive DU analysis but are also found in other

physiological signal measurements. Fetal electrocardiograms (fECG) and phonocardiograms

(fPCG) are often used to assess fetal heart rate analysis but are obscured by mixing of maternal

cardiac signal and background noise. Similarly, signal-separation techniques are not easily

assessed in these modalities due to a lack of ground truth to evaluate the extracted fetal signal

quality. As such, synthetic data has been proposed to allow for the direct comparison of signal

processing methodologies. In fECG, fetal cardiac data is simulated using physiological model-

ing of cardiac function mimicking sensor placement and noise sources [17, 18]. The synthetic

data from this simulation model has been used for signal separation comparisons [17] and the

training of deep learning models which require large quantities of samples to prevent overfit-

ting to real-data [19, 20].

Doppler ultrasound of blood flow can be simulated using numerical models to produce pul-

satile data [21, 22]. However, cardiac sounds from precordial DU as well as bubble signals

have not been modeled making direct simulations of post-decompression data not feasible. In

our previous work, we developed a novel deep learning approach for automated Doppler clas-

sification trained initially on synthetic data and fine-tuned on real-data [23]. Due to the com-

plexities in fully simulating relevant and accurate synthetic DU data, we procedurally

combined experimentally collected human cardiac and flowing bubble DU audio creating data

spanning all 5 Spencer grades. Trained solely on real-world data (274 recordings), the pro-

posed deep learning network was only able to achieve 60.3% average ordinal accuracy in pre-

cordial DU and 64.2% subclavian DU average ordinal accuracy. However, network pretraining

using synthetic data prior to fine-tuning with real data improved the network performance to

84.9% and 90.4% for precordial and subclavian DU classification, respectively.

Here we describe and reiterate the methods for synthetic data generation described in our

previous work, while expanding the types of data being generated. In particular, we augment

the precordial baseline data with the addition of another 3 non-diving subjects, add subclavian

baseline data from previously acquired pre-dive data from 75 subjects in the field, change our

superposition algorithm to allow for bubbles both in-between cardiac cycles and throughout

the cardiac cycle, and generate datasets for both KM and Spencer grades in each case. We addi-

tionally provide all codes and data, consisting of 15,000 Spencer and 66,000 KM 10-second

synthetic audio recordings, to aid in the development and evaluation of automated DU VGE

assessment methods.

Materials and methods

1. Baseline data collection

1.1 Baseline precordial data collection. The baseline non-diving precordial data used in

this work is the same as in (21), with the exception of additional datasets from 3 subjects and

removal of 2 subjects that produced relatively lower quality data (total of 16 subjects vs 15 pre-

viously). Briefly, precordial DU recordings were collected in 16 healthy human compensated

volunteers (age 18–50) and free of heart murmurs who had given informed consent. The study

PLOS ONE Synthetic post-dive Doppler ultrasound

PLOS ONE | https://doi.org/10.1371/journal.pone.0284922 April 27, 2023 3 / 13

https://doi.org/10.1371/journal.pone.0284922


was approved by the Duke Health Institutional Review Board (Pro#00105294). Precordial DU

was performed on either or both clinical DU scanners to replicate baseline recordings used in

historical ultrasound database. Volunteers were measured initially at rest, then with leg flex-

ions. Continuous-wave (CW) Doppler ultrasound was obtained using a DBM9008 Doppler

Bubble Monitor system (Techno Scientific, Inc., Concord, Ontario) with a TSI-DPA7 2.5 MHz

continuous wave precordial transducer. Pulse-wave (PW) ultrasound measurements were

obtained using the DBM9610 Doppler Bubble Monitor (Techno Scientific, Inc. Concord,

Ontario) with the same transducer. Doppler audio signals were recorded from the systems

using an Analog-to-Digital converter (Behringer, U-control UCA222) and recorded to a lap-

top using Audacity software (v2.4.2, Audacity Team, USA) at 44.1 kHz sampling frequency.

Eight subjects were measured with both CW and PW systems, and eight were measured using

only the CW system. Each recording ranged between 3:30 to 7 minutes.

1.2 Baseline subclavian data. Previously collected, de-identified, subclavian ultrasound

Doppler data were also used. These were originally collected on 75 adult scuba diving volun-

teers with a minimum of 50 logged dives and “advanced open water diver” certification (pre-

dive and every 20 min after surfacing from unrestricted dives for at least 1 h) after informed

consent and as approved by the DAN institutional review board (#024-19-22) [24]. Here only

pre-dive recordings are used (to guarantee no bubbles). Subclavian Doppler ultrasound was

performed using the O’Dive™ continuous wave Doppler device (Azoth, France) and recorded

on an iPad at 48 kHz sampling frequency. Measurements were performed on both left and

right subclavian veins, at rest. Each recording ranged from 18–20 seconds.

1.3 Baseline bubble data collection. The method for generating and collecting single-

bubble Doppler recordings is described elsewhere [23]. Briefly described, a tissue-mimicking

flow phantom was fabricated by first dissolving 85% distilled water with 10g/mL porcine gela-

tin (Gel strength 300, type-A, Sigma-Aldrich, St. Louis, MO, USA), and 5% 1-propanol (Fisher

Chemical, Hampton, NH, USA). The ingredients were mixed in a beaker with a stir bar over a

hot stir plate and heated to 60˚C for 30 minutes. The mixture was then placed under vacuum

for 30 minutes for degassing, then poured into a custom mold with an 8.9 mm rod passing

through the center. After setting, the rod was removed, leaving a wall-less vessel. A peristaltic

pump (INTLLAB, Shenzhen, CN) was connected to the phantom vessel inlet and outlet, with a

reservoir of water to allow for bubbles to dissipate without recirculation. The pump was con-

trolled using an Arduino Due (Arduino, Somerville, MA, USA) at flow rates ranging from

540–900 mL/min.

Doppler ultrasound measurements were acquired using a Siemens/Acuson Sequoia C512

(Mountain View, CA, USA) with an L11-5 transducer positioned along the vessel and set to

pulse-wave Doppler mode (7 MHz). The Doppler audio output from the US machine was con-

verted to a digital signal using an off-the-shelf analog-to-digital converter and recorded using

Audacity (v2.4.2, Audacity Team, USA) with a sampling frequency of 44.1 kHz. For the experi-

ment, the pump was set to 540, 720, and 900 mL/min, the transducer was placed at one of

three angles relative to the water flow (75˚, 90˚, and 105˚). A 24g catheter was inserted along

the tubing near the phantom entrance connected to a 20 mL air-filled syringe (Becton-Dickin-

son, Franklin Lakes, NJ, USA). Air from the syringe was injected into the flowing water using

a syringe pump (Harvard Apparatus, Holliston, MA, USA) with an injection rate of 0.1 mL/

min to produce individual bubbles that were audibly separable. A graphical representation of

the flow-phantom is provided in Fig 1.

For each parameter combination, 5 audio recordings of 25-second duration were acquired,

producing 45 recordings. An additional experiment was performed with the pump flow ran-

domly varying between 540–900 mL/min at each specified angle described previously, produc-

ing 15 additional recordings.
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2. Data preprocessing and synthetic data generation

All work presented was developed and executed in MATLAB 2021b (Mathworks, Natick, MA,

USA).

2.1 Data preprocessing. For the human baseline dataset, the audio recordings were anno-

tated on one channel while the Doppler data was recorded on the second. The annotations

were automatically removed by calculating the mean of the envelope-detected channel-data

and retaining the channel with the greatest energy. The precordial baselines were additionally

manually cleaned by removing sections that contained no audio or major artifacts such as

motion. Then, the audio files are resampled from the native sampling frequency (i.e. 44.1kHz)

to a desired frequency (i.e. 8 kHz) for efficient memory usage.

Experimental Doppler bubble recordings were segmented for individual bubble signals.

This was performed by performing peak detection on the envelope detected signal. The full-

width 20% max amplitude of the peak was used to segment the whole bubble signal. Further-

more, all segmented signals longer than 0.5 seconds were removed from the dataset.

2.2 Synthetic data generation procedure. Synthetic post-dive DU data was generated

using the following process, originally proposed in Azarang et al. 2022 [23], but is expanded to

include subclavian data as well as selective placement of VGE in between cardiac cycles with-

out cardiac interference. We initially select one of the available human baseline recordings,

and then segment the audio to the desired length with an added 50% sample buffer at a ran-

dom location along the signal. This audio signal is then transformed using a time-series audio

data augmenter available in MATLAB version 2019b and newer. During this process, four

types of augmentation are applied: 1) time-stretch with a speed-up factor (0.8–1.3), 2) pitch

shift between -2 and 2 semitones, 3) volume gain between -10 and 10 dB, and 4) time-shift

with a range of the entire length of the signal. These augmentations introduce additional vari-

ability not available in the baseline data collected and serve to increase the representation of

conditions that may affect the sound of cardiac Doppler recordings such as heart rate, varying

background noise, and sensitivity.

After augmentation, cardiac cycles must be detected to allow for the placement of bubbles

into a percentage of the audible cardiac cycles. Envelope detection is performed on the

Fig 1. Schematic of the experimental setup used for laboratory Doppler ultrasound bubble recordings. A

peristaltic pump was used to provide a water flow through a wall-less vessel situated in a gelatin phantom, where air

bubbles were injected and measured with Doppler ultrasound above the phantom at different angles.

https://doi.org/10.1371/journal.pone.0284922.g001
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augmented cardiac signal and normalized. Subsequently, heart rate estimation using autocor-

relation [25] is extracted from this signal and used as a parameter in determining the total

number of cardiac cycles and distance between peaks for the peak detection function provided

in MATLAB. All heart cycles are defined as the space between each peak and are stored in an

array for use during bubble-only data generation.

Cardiac windows are defined two-fold: 1) Full cycles and 2) partial cycles. The full cycle

window allows for bubbles to be placed anywhere from peak-to-peak of a cardiac cycle regard-

less of cardiac sound amplitude. Using this window definition, VGE that are placed into the

cardiac data are occasionally obscured by cardiac noise, producing a more difficult dataset for

signal-separation. In contrast, partial cycle cardiac windows only allow for bubble placement

in regions where the background noise is 50% of the maximum amplitude in a cardiac cycle.

This increases the differentiability between cardiac and bubble signals and may be more repre-

sentative of what graders will normally hear. Furthermore, partial-cardiac windows may be

more applicable to precordial DU as the cardiac sounds are much greater in amplitude com-

pared to subclavian vein measurements and as such, we only apply this windowing technique

to our synthetic precordial data [13, 26].

A KM value is initially selected randomly from all possible KM value combinations. The

KM scale consists of three values pertaining to three separate parameters used to define the

grade assigned and thus the VGE load. We implement a modified KM scale based on the origi-

nal interchanging descriptive parameters with quantifiable values detailed in Table 3, where Pγ

is defined in Eq (1)

Pg ¼
Cardiac Period ðsÞ

Average Bubble Length sð Þ
ð1Þ

and used in calculating the maximum number of bubbles to be considered “rolling” and “con-

tinuous” as defined by the KM scale (4).

The algorithm begins with the second KM value and randomly generates a percentage

value that is then multiplied by the total number of cardiac cycles in the cardiac data (Table 3).

From there, that number of cardiac cycles are sampled from the total signal. For each cardiac

cycle, a random number of bubbles based on the ranges defined on the first KM value in the

modified KM scale (Table 3) is sampled from the available bubbles recorded experimentally.

Each of these sampled bubbles are individually augmented with time-stretch (range from 0.8–

2.0) and pitch-shift between -2 and 2 semitones. These augmented bubbles are then normal-

ized, multiplied by an amplitude value defined by the third KM value (Table 3), amplitude

modulated by ±15%, then randomly placed into an array equal length to the cardiac cycle with

low-amplitude random Gaussian noise with zero mean. This process is performed for each

Table 3. Modified Kisman-Masurel code for use in procedural synthetic data generation. Pγ is used in calculating

the maximum number of bubbles that can be added to approximate a “rolling” and “continuous” sound in KM grades

3 and 4, as defined in text in Eq (1).

KM

Score

Bubbles per cardiac

cycle

Percentage of cardiac cycles at rest with detectable

bubbles

Relative

Amplitude

0 0 0% 0.000

1 1–2 1–10% 0.100–0.250

2 3–8 10–50% 0.250–0.450

3 9 Pγ 50–99% 0.450–0.775

4 Pγ − (2 * Pγ) 100% 0.775–0.999

https://doi.org/10.1371/journal.pone.0284922.t003
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cardiac cycle selected for bubble-placement until the whole bubble-only signal is generated. A

flow-diagram describing these methods is summarized in Fig 2.

The cardiac-only signal and bubble-only signal are then used to create the post-dive syn-

thetic Doppler audio by summation. An example synthetic Doppler recording is shown in Fig

3, corresponding to KM grade 222 using precordial baseline data and full-cardiac cycles for

VGE placement. All three signals are then center cropped to the desired length defined by the

user and saved with the same name as.wav files in three separate folders. Using the same file-

name allows for simple matching between the components and synthetic DU audio. Data can

be grouped into subfolders based on their KM grade or Spencer grade if converted using the

conversion table (Table 4). An example synthetic Doppler recording is shown in Fig 2, corre-

sponding to KM grade 222 using precordial baseline data and full-cardiac cycles for VGE

placement.

Dataset and results

Using the method described above, we are able to generate a total of six types of data (Table 5),

using Spencer or KM classes, precordial or subclavian, and full or partial cardiac cycles for

VGE placement. Fig 4 shows examples of Spencer grade 4 post-dive Doppler signals for three

cases: 1) Subclavian 2) Precordial with full-cardiac cycle VGE placement, and 3) Precordial

with partial-cardiac cycle VGE placement. Only precordial data were generated for the partial-

cardiac cycle method as subclavian background noise does not typically obscure VGE signals.

Fig 2. Flow diagram detailing the synthetic data generation process.

https://doi.org/10.1371/journal.pone.0284922.g002
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Fig 3. Graphical representation of KM grade (222) synthetic data generation process. A) Original cardiac data with windows showing all cardiac

cycles segmented by orange vertical lines. Based on the KM2 value of 2, 50% of the cardiac windows are selected for bubble-placement (6/12). B) For

each selected window, a number of bubbles based on KM1 is chosen and placed into that cardiac window, bubble-audio is shown in orange. C) Summed

cardiac and bubble-only audios to generate the final synthetic combined audio recording.

https://doi.org/10.1371/journal.pone.0284922.g003

Table 4. Kisman-Masurel to Spencer conversion chart. Conversion chart between Spencer and Kisman-Masurel

codes as defined in [27].

Spencer Score Kisman-Masurel Grades

0 [000]

1 [111] [112] [113] [211] [212] [213]

2 [121] [122] [123] [221] [222] [223]

3 [232] [233] [242] [243] [332] [333] [342] [343]

4 [444]

https://doi.org/10.1371/journal.pone.0284922.t004

Table 5. Description of data types that can be generated using the proposed algorithm.

Case Description

Case 1 Precordial DU, Spencer grading scale, VGE placed into full-cardiac cycles

Case 2 Subclavian DU, Spencer grading scale, VGE placed into full-cardiac cycles

Case 3 Precordial DU, Kisman-Masurel grading scale, VGE placed into full-cardiac cycles

Case 4 Subclavian DU, Kisman-Masurel grading scale, VGE placed into full-cardiac cycles

Case 5 Precordial DU, Spencer grading scale, VGE placed into low-amplitude cardiac regions

Case 6 Precordial DU, Kisman-Masurel grading scale, VGE placed into low-amplitude cardiac regions

https://doi.org/10.1371/journal.pone.0284922.t005
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The dataset provided contains all baseline precordial and subclavian recordings as well as the

isolated VGE DU audio. Furthermore, we include generated data using our algorithm for each

of the six scenarios described in Table 5. In the pre-generated data, 1000 10-second samples

for each class are provided (5-class for Spencer and 22 classes for Kisman-Masurel as seen in

Table 4). This results in the generation of a dataset of 15,000 10-s recordings of Spencer (1000

x 5 grades x 3 [precordial full cardiac cycles, precordial partial cardiac cycles, subclavian]), and

66,000 10-s KM synthetic datasets (1000 x 22 grades x 3 [precordial full cardiac cycles, precor-

dial partial cardiac cycles, subclavian]). Counting the corresponding bubble only and cardiac

only signals, a grand total 243,000 audio files is therefore generated and shared. We release all

codes and generated data under an open-source license (GNU General Public License v2.0)

for use and improvement by others. The code is available on GitHub at https://github.com/

dle4/Synthetic-Post-Dive-Ultrasound-Audio-Generator and the dataset on the Dryad reposi-

tory at https://doi.org/10.5061/dryad.xgxd254kp. A set of example data is also presented as

Supplemental material linked to this paper.

The generated data is organized into six directories for each of the cases described in

Table 5. For each case, three sub-directories are available, denoting the isolated cardiac-only

audio, isolated bubble-only audio, and combined synthetic post-dive audio. Within each of

those directories, the data is further organized by VGE grades (Spencer grade 0–4 or KM

grade 000–444). Within each of those sub-directories exists the generated DU audio file, with

naming convention “SyntheticGeneratorCase_classLabel_#.wav”. For each audio file in the

combined directory, the isolated human and VGE DU recordings used to generate the syn-

thetic data can be found with the same filename in the parallel directory paths. The identical

naming convention allows for simple reference to the audio files used to generate the final

Fig 4. Examples of Spencer grade 4 for 3 conditions: 1) Subclavian data with VGE placed at any point along the signal. 2) Precordial data with VGE

placed at any point in the signal, and 3) Precordial data with VGE placed only within the regions with amplitude less than 50% of the maximum

amplitude between cardiac cycles.

https://doi.org/10.1371/journal.pone.0284922.g004
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synthetic DU file. A directory tree representation of the code output is presented in Fig 5. This

directory path system can be user-modified as desired for their intended purposes.

Using this algorithm, a single 10-second Doppler audio file is generated in 0.1816 seconds

using a computer with an Intel core i9-9940x averaged over 100 files. Using parallelization, 14

recordings can be generated simultaneously per iteration, significantly improving the data

generation rate.

Discussion

Due to the limited availability of real-world post-dive DU data, we have developed a method

for generating synthetic DU audio capable of representing the large degree of variability found

in vivo. We do not intend for this dataset to be a replacement for real-world data, but to be

used as supplemental data for the development of automated VGE analysis methods. Using

the framework presented here, it is possible to generate an unlimited number of samples and it

can be modified further by others to allow for recordings of longer length, greater noise, or dif-

ferent VGE grading scale definitions.

Furthermore, due to the separate sources of bubble-only and cardiac-only data, signal separa-

tion methods may be evaluated upon this data for proof-of-concept validation as well as perfor-

mance comparison with other techniques. Simulated fetal echocardiography data generated in

other studies [18, 28] have been used for this purpose as an initial benchmark for various fECG

extraction algorithms. Additionally, compared to the sole use of Spencer grade classification

accuracy as the final metric for DU VGE analysis, the ground truth bubble-only DU data con-

taining the exact number and placement of bubbles is available to researchers, and can be used

for more detailed evaluation metrics. For example, a subset of the synthetic data presented here

has been used in our prior work, enhancing the performance of a deep-learning algorithm tasked

with Spencer grade classifications [23]. Additional validation of this dataset as a benchmark for

signal separation or other VGE classification systems could be envisaged in future work.

Several limitations for the synthetic data generator are present in this work. One of these

limitations is that the data generated is, in the case of precordial recordings, relatively clean

and free from motion artifacts and noise that may be present in real-world situations. This

occurs due to the baseline data being collected in a controlled laboratory setting as well as the

Fig 5. Directory tree representation of directory system containing the generated synthetic data upon execution.

https://doi.org/10.1371/journal.pone.0284922.g005
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algorithm itself relying on cardiac cycle detection which fails when motion artifacts occur in

the source data. Additionally, data variability is limited based on the source of the baseline

human and VGE data. In this work, we collect human baseline data using clinical and com-

mercial devices that are not always used in the research field and attempt to address this using

audio-based time-series augmentation to modify the data available. However, the dataset pro-

vided by Pierleoni et al. (2019) used a fetal Doppler system which may have different signal

processing and output compared to our systems that may not be replicated using this augmen-

tation strategy. This can be remedied by the addition of baseline data using other devices and

by the inclusion of additional individuals to generate a more representative dataset. Finally,

our data has only been evaluated qualitatively by our expert DU operator (SLB) and although

found to be similar to real-world data, is not guaranteed that a certain grade will be identical to

a trained rater. The algorithm provided follows the KM scale definitions with minimal inter-

pretation, however, due to the variability between trained raters as described in [11] it is diffi-

cult to find one set of parameters that will perfectly represent all raters. As such, the

parameters provided for our modified KM scale can be changed by the end user.

Conclusion

The post-dive DU audio synthetic data generator presented in this work allows for researchers

to create DU data across a large spectrum of real-world cases for example: precordial or subcla-

vian measurements; at rest or flex; with and without strong distinction between VGE and car-

diac noise; and KM or Spencer VGE grading systems. Using this generator, the user can be

provided with the isolated ground truths for the human and VGE signal components for each

synthetic DU audio which can be aid in the validation of VGE extraction techniques of rele-

vance to decompression research. Furthermore, this synthetic data can be used to supplement

real-world data for deep-learning approaches to VGE analysis. We release all codes under an

open-source license for use and improvement by users, available at https://github.com/dle4/

Synthetic-Post-Dive-Ultrasound-Audio-Generator, as well as 243,000 audio files comprising

synthetic Doppler ultrasound signals and their corresponding bubble and cardiac only signals

on https://doi.org/10.5061/dryad.xgxd254kp.

Supporting information

S1 Text. We provide a small subset of the full synthetic dataset as supplemental data at

https://doi.org/10.5061/dryad.xgxd254kp. These data cover the six cases described in

Table 5, with one recording per VGE grade; following the same directory structure as

described in the dataset section.

(TXT)

S1 File.
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