4 research outputs found

    Effects of Different Light Curing Units/Modes on the Microleakage of Flowable Composite Resins

    Get PDF
    Objectives The aim of this in vitro study was to evaluate the influence of different light curing units and modes on microleakage of flowable composite resins. Methods Eighty Class V cavities were prepared in buccal and lingual surfaces of 40 extracted human premolars with cervical wall located in dentin and the occlusal wall in enamel. These teeth were randomly assigned into two groups (n=20) and restored with different flowable composites; Group I: Esthet-X Flow, Group II: Grandio Flow. Each group was randomly divided into four subgroups; while the samples of the first subgroup were polymerized with conventional Halogen light, the rest of them were polymerized with different curing modes of Light Emitting Diode (LED). The second subgroup was polymerized with fast-curing; the third subgroup with pulse-curing and those of the fourth subgroup with step-curing modes of LED. After the samples were thermocycled and immersed in dye, they were longitudinally sectioned. Dye penetration was assessed under a stereomicroscope. Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests. Results None of the restorations showed leakage on enamel margins. On dentin margins no significant differences were observed between flowable composite resins polymerized with halogen light (P>.05). While step curing mode of LED presented significant differences between the resins, the difference was insignificant when fast-curing and pulse-curing mode of LED were used. No statistically significant differences were observed between curing units for Esthet-X Flow samples. For Grandio Flow samples, only step-curing mode of LED caused statistically higher leakage scores than halogen and other curing modes of LED (P<.05). Conclusions The effect of curing units’ type and curing mode on flowable composite resin leakage might be material-dependent.PubMe

    Bond Strength Of One-Step Self-Etch Adhesives And Their Predecessors To Ground Versus Unground Enamel

    Get PDF
    Objective The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Methods: Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C–55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at P<.05. Results: All adhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (P<.05). No significant differences in bond strength values were observed between ground and unground enamel for any of the adhesives tested (P=.17). Conclusion: Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested.PubMe
    corecore