7 research outputs found

    ArchEnemy: Removing scattered-light glitches from gravitational wave data

    Full text link
    Data recorded by gravitational wave detectors includes many non-astrophysical transient noise bursts, the most common of which is caused by scattered-light within the detectors. These so-called ``glitches'' in the data impact the ability to both observe and characterize incoming gravitational wave signals. In this work we use a scattered-light glitch waveform model to identify and characterize scattered-light glitches in a representative stretch of gravitational wave data. We identify 27492749 scattered-light glitches in 5.965.96 days of LIGO-Hanford data and 13061306 glitches in 5.935.93 days of LIGO-Livingston data taken from the third LIGO-Virgo observing run. By subtracting identified scattered-light glitches we demonstrate an increase in the sensitive volume of the gravitational wave search for binary black hole signals by 1%\sim1\%.Comment: 30 pages + acknowledgements and references, 13 figure

    Unified p astro for gravitational waves: Consistently combining information from multiple search pipelines

    Get PDF
    Recent gravitational-wave transient catalogs have used p astro, the probability that a gravitational-wave candidate is astrophysical, to select interesting candidates for further analysis. Unlike false alarm rates, which exclusively capture the statistics of the instrumental noise triggers, p astro incorporates the rate at which triggers are generated by both astrophysical signals and instrumental noise in estimating the probability that a candidate is astrophysical. Multiple search pipelines can independently calculate p astro, each employing a specific data reduction. While the range of p astro results can help indicate the range of uncertainties in its calculation, it complicates interpretation and subsequent analyses. We develop a statistical formalism to calculate a unified p astro for gravitational-wave candidates, consistently accounting for triggers from all pipelines, thereby incorporating extra information about a signal that is not available with any one single pipeline. We demonstrate the properties of this method using a toy model and by application to the publicly available list of gravitational-wave candidates from the first half of the third LIGO-Virgo-KAGRA observing run. Adopting a unified p astro for future catalogs would provide a simple and easy-to-interpret selection criterion that incorporates a more complete understanding of the strengths of the different search pipelines

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    gwastro/pycbc: v2.2.2 release of PyCBC

    No full text
    This is the v2.2.2 release of PyCBC. Adds a variety of incremental improvements with respect to v2.2.1, including the ability to use the SEOBNRv5 waveform. See the commit history for more details. A Docker container for this release is available from the pycbc/pycbc-el8 repository on Docker Hub and can be downloaded using the command: docker pull pycbc/pycbc-el8:v2.2.2 On a machine with CVMFS installed, a pre-built virtual environment is available for Red Hat 8 compatible operating systems by running the command: source /cvmfs/software.igwn.org//pycbc/x86_64_rhel_8/virtualenv/pycbc-v2.2.2/bin/activate A singularity container is available at /cvmfs/singularity.opensciencegrid.org/pycbc/pycbc-el8:v2.2.1 which can be started with the command: singularity shell --home ${HOME}:/srv --pwd /srv --bind /cvmfs --contain --ipc --pid /cvmfs/singularity.opensciencegrid.org/pycbc/pycbc-el8:v2.2.
    corecore