2 research outputs found

    Targeted Delivery of Doxorubicin to Mitochondria

    No full text
    Several families of highly effective anticancer drugs are selectively toxic to cancer cells because they disrupt nucleic acid synthesis in the nucleus. Much less is known, however, about whether interfering with nucleic acid synthesis in the mitochondria would have significant cellular effects. In this study, we explore this with a mitochondrially targeted form of the anticancer drug doxorubicin, which inhibits DNA topoisomerase II, an enzyme that is both in mitochondria and nuclei of human cells. When doxorubicin is attached to a peptide that targets mitochondria, it exhibits significant toxicity. However, when challenged with a cell line that overexpresses a common efflux pump, it does not exhibit the reduced activity of the nuclear-localized parent drug and resists being removed from the cell. These results indicate that targeting drugs to the mitochondria provides a means to limit drug efflux and provide evidence that a mitochondrially targeted DNA topoisomerase poison is active within the organelle

    Mitochondrial Targeting of Doxorubicin Eliminates Nuclear Effects Associated with Cardiotoxicity

    Get PDF
    The highly effective anticancer agent doxorubicin (Dox) is a frontline drug used to treat a number of cancers. While Dox has a high level of activity against cancer cells, its clinical use is often complicated by dose-limiting cardiotoxicity. While this side effect has been linked to the drug’s direct activity in the mitochondria of cardiac cells, recent studies have shown that these result primarily from downstream effects of nuclear DNA damage. Our lab has developed a mitochondrially targeted derivative of Dox that enables the selective study of toxicity generated by the presence of Dox in the mitochondria of human cells. We demonstrate that mitochondria-targeted doxorubicin (mtDox) lacks any direct nuclear effects in H9c2 rat cardiomyocytes, and that these cells are able to undergo mitochondrial biogenesis. This recovery response compensates for the mitotoxic effects of Dox and prevents cell death in cardiomyocytes. Furthermore, cardiac toxicity was only observed in Dox but not mtDox treated mice. This study supports the hypothesis that mitochondrial damage is not the main source of the cardiotoxic effects of Dox
    corecore