2 research outputs found

    Functional Autoregression for Sparsely Sampled Data

    No full text
    <p>We develop a hierarchical Gaussian process model for forecasting and inference of functional time series data. Unlike existing methods, our approach is especially suited for sparsely or irregularly sampled curves and for curves sampled with nonnegligible measurement error. The latent process is dynamically modeled as a functional autoregression (FAR) with Gaussian process innovations. We propose a fully nonparametric dynamic functional factor model for the dynamic innovation process, with broader applicability and improved computational efficiency over standard Gaussian process models. We prove finite-sample forecasting and interpolation optimality properties of the proposed model, which remain valid with the Gaussian assumption relaxed. An efficient Gibbs sampling algorithm is developed for estimation, inference, and forecasting, with extensions for FAR(<i>p</i>) models with model averaging over the lag <i>p</i>. Extensive simulations demonstrate substantial improvements in forecasting performance and recovery of the autoregressive surface over competing methods, especially under sparse designs. We apply the proposed methods to forecast nominal and real yield curves using daily U.S. data. Real yields are observed more sparsely than nominal yields, yet the proposed methods are highly competitive in both settings. Supplementary materials, including R code and the yield curve data, are available online.</p

    Additive Function-on-Function Regression

    No full text
    <p>We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself, as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a novel combination of spline bases with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new response trajectory, propose an inference procedure that accounts for total variability in the predicted response curves, and construct pointwise prediction intervals. The estimation/inferential procedure accommodates realistic scenarios, such as correlated error structure as well as sparse and/or irregular designs. We investigate our methodology in finite sample size through simulations and two real data applications. Supplementary material for this article is available online.</p
    corecore