3,073 research outputs found

    Physical Properties of a Pilot Sample of Spectroscopic Close Pair Galaxies at z ~ 2

    Get PDF
    We use Hubble Space Telescope Wide-Field Camera 3 (HST/WFC3) rest-frame optical imaging to select a pilot sample of star-forming galaxies in the redshift range z = 2.00-2.65 whose multi-component morphologies are consistent with expectations for major mergers. We follow up this sample of major merger candidates with Keck/NIRSPEC longslit spectroscopy obtained in excellent seeing conditions (FWHM ~ 0.5 arcsec) to obtain Halpha-based redshifts of each of the morphological components in order to distinguish spectroscopic pairs from false pairs created by projection along the line of sight. Of six pair candidates observed, companions (estimated mass ratios 5:1 and 7:1) are detected for two galaxies down to a 3sigma limiting emission-line flux of ~ 10^{-17} erg/s/cm2. This detection rate is consistent with a ~ 50% false pair fraction at such angular separations (1-2 arcsec), and with recent claims that the star-formation rate (SFR) can differ by an order of magnitude between the components in such mergers. The two spectroscopic pairs identified have total SFR, SFR surface densities, and stellar masses consistent on average with the overall z ~ 2 star forming galaxy population.Comment: 11 pages, 5 figures. Accepted for publication in Ap

    Female reproductive strategy predicts preferences for sexual dimorphism in male faces

    Get PDF
    The aim of the current studies was to test an assumption that variation in female preferences for sexually dimorphic male facial characteristics reflects strategic optimisation of investment in offspring. A negative relationship was predicted between ideal number of children and preferences for masculine male face shapes, as the benefits of securing paternal investment should outweigh the benefits of securing good genes as the costs of raising offspring increase. In Study 1 desired number of children and preferences for masculine face shapes were compared in a sample of female students. In study 2, the prediction was tested in a sample with a wider age profile while controlling for relationship status. Preferences for explicit partner characteristics were also assessed. The prediction was supported: women who desired a higher number of children preferred more feminine male face shapes and ranked cues to investment of parental care over cues to immunocompetence in a partner more highly than those who desired fewer children. Results indicate that female mate preferences vary with reproductive strategy and support assumptions that preferences for feminine male faces reflect preferences for “good dads”

    Dark Matter Constraints from the Sagittarius Dwarf and Tail System

    Get PDF
    2MASS has provided a three-dimensional map of the >360 degree, wrapped tidal tails of the Sagittarius (Sgr) dwarf spheroidal galaxy, as traced by M giant stars. With the inclusion of radial velocity data for stars along these tails, strong constraints exist for dynamical models of the Milky Way-Sgr interaction. N-body simulations of Sgr disruption with model parameters spanning a range of initial conditions (e.g., Sgr mass and orbit, Galactic rotation curve, halo flattening) are used to find parameterizations that match almost every extant observational constraint of the Sgr system. We discuss the implications of the Sgr data and models for the orbit, mass and M/L of the Sgr bound core as well as the strength, flattening, and lumpiness of the Milky Way potential.Comment: 6 pages, 0 figures. Contribution to proceedings of ``IAU Symposium 220: Dark Matter in Galaxies'', eds. S. Ryder, D.J. Pisano, M. Walker, and K. Freema

    The inner structure and kinematics of the Sagittarius dwarf galaxy as a product of tidal stirring

    Full text link
    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present known orbit of the dwarf, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10^8 M_sun. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10^10 M_sun, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.Comment: 14 pages, 14 figures, minor changes to match the version published in Ap
    • …
    corecore