31 research outputs found

    Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides

    No full text
    Protein glycosylation plays fundamental roles in many cellular processes, and previous reports have shown dysregulation to be associated with several human diseases, including diabetes, cancer, and neurodegenerative disorders. Despite the vital role of glycosylation for proper protein function, the analysis of glycoproteins has been lagged behind to other protein modifications. In this study, we describe the reanalysis of global proteomic data from breast cancer xenograft tissues using recently developed software package GPQuest 2.0, revealing a large number of previously unidentified N-linked glycopeptides. More importantly, we found that using immobilized metal affinity chromatography (IMAC) technology for the enrichment of phosphopeptides had coenriched a substantial number of sialoglycopeptides, allowing for a large-scale analysis of sialoglycopeptides in conjunction with the analysis of phosphopeptides. Collectively, combined tandem mass spectrometry (MS/MS) analyses of global proteomic and phosphoproteomic data sets resulted in the identification of 6 724 N-linked glycopeptides from 617 glycoproteins derived from two breast cancer xenograft tissues. Next, we utilized GPQuest 2.0 for the reanalysis of global and phosphoproteomic data generated from 108 human breast cancer tissues that were previously analyzed by Clinical Proteomic Analysis Consortium (CPTAC). Reanalysis of the CPTAC data set resulted in the identification of 2 683 glycopeptides from the global proteomic data set and 4 554 glycopeptides from phosphoproteomic data set, respectively. Together, 11 292 N-linked glycopeptides corresponding to 1 731 N-linked glycosites from 883 human glycoproteins were identified from the two data sets. This analysis revealed an extensive number of glycopeptides hidden in the global and enriched in IMAC-based phosphopeptide-enriched proteomic data, information which would have remained unknown from the original study otherwise. The reanalysis described herein can be readily applied to identify glycopeptides from already existing data sets, providing insight into many important facets of protein glycosylation in different biological, physiological, and pathological processes

    Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides

    No full text
    Protein glycosylation plays fundamental roles in many cellular processes, and previous reports have shown dysregulation to be associated with several human diseases, including diabetes, cancer, and neurodegenerative disorders. Despite the vital role of glycosylation for proper protein function, the analysis of glycoproteins has been lagged behind to other protein modifications. In this study, we describe the reanalysis of global proteomic data from breast cancer xenograft tissues using recently developed software package GPQuest 2.0, revealing a large number of previously unidentified N-linked glycopeptides. More importantly, we found that using immobilized metal affinity chromatography (IMAC) technology for the enrichment of phosphopeptides had coenriched a substantial number of sialoglycopeptides, allowing for a large-scale analysis of sialoglycopeptides in conjunction with the analysis of phosphopeptides. Collectively, combined tandem mass spectrometry (MS/MS) analyses of global proteomic and phosphoproteomic data sets resulted in the identification of 6 724 N-linked glycopeptides from 617 glycoproteins derived from two breast cancer xenograft tissues. Next, we utilized GPQuest 2.0 for the reanalysis of global and phosphoproteomic data generated from 108 human breast cancer tissues that were previously analyzed by Clinical Proteomic Analysis Consortium (CPTAC). Reanalysis of the CPTAC data set resulted in the identification of 2 683 glycopeptides from the global proteomic data set and 4 554 glycopeptides from phosphoproteomic data set, respectively. Together, 11 292 N-linked glycopeptides corresponding to 1 731 N-linked glycosites from 883 human glycoproteins were identified from the two data sets. This analysis revealed an extensive number of glycopeptides hidden in the global and enriched in IMAC-based phosphopeptide-enriched proteomic data, information which would have remained unknown from the original study otherwise. The reanalysis described herein can be readily applied to identify glycopeptides from already existing data sets, providing insight into many important facets of protein glycosylation in different biological, physiological, and pathological processes

    Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides

    No full text
    Protein glycosylation plays fundamental roles in many cellular processes, and previous reports have shown dysregulation to be associated with several human diseases, including diabetes, cancer, and neurodegenerative disorders. Despite the vital role of glycosylation for proper protein function, the analysis of glycoproteins has been lagged behind to other protein modifications. In this study, we describe the reanalysis of global proteomic data from breast cancer xenograft tissues using recently developed software package GPQuest 2.0, revealing a large number of previously unidentified N-linked glycopeptides. More importantly, we found that using immobilized metal affinity chromatography (IMAC) technology for the enrichment of phosphopeptides had coenriched a substantial number of sialoglycopeptides, allowing for a large-scale analysis of sialoglycopeptides in conjunction with the analysis of phosphopeptides. Collectively, combined tandem mass spectrometry (MS/MS) analyses of global proteomic and phosphoproteomic data sets resulted in the identification of 6 724 N-linked glycopeptides from 617 glycoproteins derived from two breast cancer xenograft tissues. Next, we utilized GPQuest 2.0 for the reanalysis of global and phosphoproteomic data generated from 108 human breast cancer tissues that were previously analyzed by Clinical Proteomic Analysis Consortium (CPTAC). Reanalysis of the CPTAC data set resulted in the identification of 2 683 glycopeptides from the global proteomic data set and 4 554 glycopeptides from phosphoproteomic data set, respectively. Together, 11 292 N-linked glycopeptides corresponding to 1 731 N-linked glycosites from 883 human glycoproteins were identified from the two data sets. This analysis revealed an extensive number of glycopeptides hidden in the global and enriched in IMAC-based phosphopeptide-enriched proteomic data, information which would have remained unknown from the original study otherwise. The reanalysis described herein can be readily applied to identify glycopeptides from already existing data sets, providing insight into many important facets of protein glycosylation in different biological, physiological, and pathological processes

    Addressing limitations of the Gait Variability Index to enhance its applicability: The enhanced GVI (EGVI) - Fig 4

    No full text
    <p><b>Relationships between GVI (vertical axis) and EGVI, in the data from Balasubramanian et al. (2016) (4a) and in the data from Rennie et al. (2017) (4b).</b> The coefficient of determination was computed once all data represented by crosses were removed. The crosses in the area where GVI<100 and EGVI<100 correspond to data for which the lower GVI was due to lower variability than HP. The crosses for GVI>100 are from individuals whose distance <i>d</i><sup><i>⍺</i>,<i>HP</i></sup> was smaller than mean HP.</p

    Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides

    No full text
    Protein glycosylation plays fundamental roles in many cellular processes, and previous reports have shown dysregulation to be associated with several human diseases, including diabetes, cancer, and neurodegenerative disorders. Despite the vital role of glycosylation for proper protein function, the analysis of glycoproteins has been lagged behind to other protein modifications. In this study, we describe the reanalysis of global proteomic data from breast cancer xenograft tissues using recently developed software package GPQuest 2.0, revealing a large number of previously unidentified N-linked glycopeptides. More importantly, we found that using immobilized metal affinity chromatography (IMAC) technology for the enrichment of phosphopeptides had coenriched a substantial number of sialoglycopeptides, allowing for a large-scale analysis of sialoglycopeptides in conjunction with the analysis of phosphopeptides. Collectively, combined tandem mass spectrometry (MS/MS) analyses of global proteomic and phosphoproteomic data sets resulted in the identification of 6 724 N-linked glycopeptides from 617 glycoproteins derived from two breast cancer xenograft tissues. Next, we utilized GPQuest 2.0 for the reanalysis of global and phosphoproteomic data generated from 108 human breast cancer tissues that were previously analyzed by Clinical Proteomic Analysis Consortium (CPTAC). Reanalysis of the CPTAC data set resulted in the identification of 2 683 glycopeptides from the global proteomic data set and 4 554 glycopeptides from phosphoproteomic data set, respectively. Together, 11 292 N-linked glycopeptides corresponding to 1 731 N-linked glycosites from 883 human glycoproteins were identified from the two data sets. This analysis revealed an extensive number of glycopeptides hidden in the global and enriched in IMAC-based phosphopeptide-enriched proteomic data, information which would have remained unknown from the original study otherwise. The reanalysis described herein can be readily applied to identify glycopeptides from already existing data sets, providing insight into many important facets of protein glycosylation in different biological, physiological, and pathological processes

    Relationships between GVI (vertical axis) and EGVI, in the data from Gouelle et al. (2015).

    No full text
    <p>The point in dark green represents the younger child who walked independently only for two weeks and is provided to give an idea about what could be about the ceiling of EGVI (175) for a high level of unsteadiness in ambulation.</p

    Evaluation of NCI‑7 Cell Line Panel as a Reference Material for Clinical Proteomics

    No full text
    Reference materials are vital to benchmarking the reproducibility of clinical tests and essential for monitoring laboratory performance for clinical proteomics. The reference material utilized for mass spectrometric analysis of the human proteome would ideally contain enough proteins to be suitably representative of the human proteome, as well as exhibit a stable protein composition in different batches of sample regeneration. Previously, The Clinical Proteomic Tumor Analysis Consortium (CPTAC) utilized a PDX-derived comparative reference (CompRef) materials for the longitudinal assessment of proteomic performance; however, inherent drawbacks of PDX-derived material, including extended time needed to grow tumors and high level of expertise needed, have resulted in efforts to identify a new source of CompRef material. In this study, we examined the utility of using a panel of seven cancer cell lines, NCI-7 Cell Line Panel, as a reference material for mass spectrometric analysis of human proteome. Our results showed that not only is the NCI-7 material suitable for benchmarking laboratory sample preparation methods, but also NCI-7 sample generation is highly reproducible at both the global and phosphoprotein levels. In addition, the predicted genomic and experimental coverage of the NCI-7 proteome suggests the NCI-7 material may also have applications as a universal standard proteomic reference

    Evaluation of NCI‑7 Cell Line Panel as a Reference Material for Clinical Proteomics

    No full text
    Reference materials are vital to benchmarking the reproducibility of clinical tests and essential for monitoring laboratory performance for clinical proteomics. The reference material utilized for mass spectrometric analysis of the human proteome would ideally contain enough proteins to be suitably representative of the human proteome, as well as exhibit a stable protein composition in different batches of sample regeneration. Previously, The Clinical Proteomic Tumor Analysis Consortium (CPTAC) utilized a PDX-derived comparative reference (CompRef) materials for the longitudinal assessment of proteomic performance; however, inherent drawbacks of PDX-derived material, including extended time needed to grow tumors and high level of expertise needed, have resulted in efforts to identify a new source of CompRef material. In this study, we examined the utility of using a panel of seven cancer cell lines, NCI-7 Cell Line Panel, as a reference material for mass spectrometric analysis of human proteome. Our results showed that not only is the NCI-7 material suitable for benchmarking laboratory sample preparation methods, but also NCI-7 sample generation is highly reproducible at both the global and phosphoprotein levels. In addition, the predicted genomic and experimental coverage of the NCI-7 proteome suggests the NCI-7 material may also have applications as a universal standard proteomic reference
    corecore