10,142 research outputs found

    Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration

    Full text link
    Quasi-chemical theory is utilized to analyze the roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl−^-, Br−^-, and I−^-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The quasi-chemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. The spatial partitioning allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy

    Ab initio investigation of intermolecular interactions in solid benzene

    Full text link
    A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy

    Electrical Modification of Combustion and the Affect of Electrode Geometry on the Field Produced

    Get PDF
    There has been extensive work to show how electric fields can influence combustion. However, many different set ups are used. This work shows how different set ups produce different field strengths and that the field is not always uniformly distributed. The field strength is modelled using Ansys Maxwell. The type of material used is discussed and the set up of apparatus. It is recommended to use parallel plates for experimentation. Parallel plates produce the most uniform field this allow's it's influence to be directly investigated and related to the field strength

    Incommensurate magnetism near quantum criticality in CeNiAsO

    Full text link
    Two phase transitions in the tetragonal strongly correlated electron system CeNiAsO were probed by neutron scattering and zero field muon spin rotation. For T<TN1T <T_{N1} = 8.7(3) K, a second order phase transition yields an incommensurate spin density wave with wave vector k=(0.44(4),0,0)\textbf{k} = (0.44(4), 0, 0). For T<TN2T < T_{N2} = 7.6(3) K, we find co-planar commensurate order with a moment of 0.37(5) μB0.37(5)~\mu_B, reduced to 30%30 \% of the saturation moment of the ∣±12⟩|\pm\frac{1}{2}\rangle Kramers doublet ground state, which we establish by inelastic neutron scattering. Muon spin rotation in CeNiAs1−xPxO\rm CeNiAs_{1-x}P_xO shows the commensurate order only exists for x ≤\le 0.1 so the transition at xcx_c = 0.4(1) is from an incommensurate longitudinal spin density wave to a paramagnetic Fermi liquid

    In Memoriam: Memorial Tributes for Professor Elizabeth B. Clark

    Get PDF
    Today we come together to remember Professor Elizabeth Battelle Clark, Betsy to all who knew her. We were shocked to hear of her illness, inspired by the intensity of her fight against it, and deeply saddened by her death. We have come together before to mourn her loss. Now we gather once more to celebrate our good fortune to have known Betsy and to share our remembrances of her

    The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery

    Full text link
    We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65 micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary observational techniques were utilized: non-redundant aperture masking on the 10-m Keck-I telescope yielding images of the innermost regions at unprecedented resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field. For the first time the inner dust shell has been resolved in the near-infrared to reveal a one-sided extension of circumstellar emission within 0.1" (~15 R_star) of the star. The line-of-sight optical depths of the circumstellar dust shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be 1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the bolometric luminosity of VY~CMa to be estimated independent of the dust shell geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations, including a large scattering plume and a bow-shaped dust feature, were observed in the faint, extended nebula up to 4" from the central source. While the origin of the nebulous plume remains uncertain, a geometrical model is developed assuming the plume is produced by radially-driven dust grains forming at a rotating flow insertion point with a rotational period between 1200-4200 years, which is perhaps the stellar rotational period or the orbital period of an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical Journal (to appear in February 1999
    • …
    corecore