7 research outputs found

    Convergent Syntheses of Isomeric Imidazolospiroketones as Templates for Acetyl-CoA Carboxylase (ACC) Inhibitors

    No full text
    The synthesis of imidazole fused spirocyclic ketones as templates for acetyl-CoA carboxylase (ACC) inhibitors is reported. By completing the spirocyclic ring closure via divergent pathways, the synthesis of these regioisomers from common intermediates was developed. Through an aldehyde homologation/transmetalation strategy, one isomer was formed selectively. The second desired isomer was obtained via an intramolecular aromatic homolytic substitution reaction. Preparation of these isomeric spiroketones provided templates which, upon elaboration, led to key structure–activity relationship (SAR) points for delivery of potent ACC inhibitors

    The Synthesis of Methyl-Substituted Spirocyclic Piperidine-Azetidine (2,7-Diazaspiro[3.5]nonane) and Spirocyclic Piperidine-Pyrrolidine (2,8-Diazaspiro[4.5]decane) Ring Systems

    No full text
    The synthesis of a series of pharmaceutically important <i>N</i>-protected methyl-substituted spirocyclic piperidine-azetidine (2,7-diazaspiro­[3.5]­nonane) and spirocyclic piperidine-pyrrolidine (2,8-diazaspiro­[4.5]­decane) ring systems was developed. These motifs contain two differentiated sites (protected secondary amines) to allow for further functionalization via reductive amination, amidation, or other chemistry. The methyl-substituted spiroazetidine ring systems were accessed using nitrile lithiation/​alkylation chemistry while the methyl-substituted spiropyrrolidines were synthesized by 1,4-addition reactions with nitroalkanes, followed by reduction and cyclization. These conditions were then scaled for the synthesis of 1-methyl spirocyclic piperidine-pyrrolidine with a classical resolution of the product using a tartaric acid derivative to isolate a single enantiomer

    Synthesis of 7-Oxo-dihydrospiro[indazole-5,4′-piperidine] Acetyl-CoA Carboxylase Inhibitors

    No full text
    Synthesis of oxo-dihydrospiroindazole-based acetyl-CoA carboxylase (ACC) inhibitors is reported. The dihydrospiroindazoles were assembled in a regioselective manner in six steps from substituted hydrazines and protected 4-formylpiperidine. Enhanced regioselectivity in the condensation between a keto enamine and substituted hydrazines was observed when using toluene as the solvent, leading to selective formation of 1-substituted spiroindazoles. The 2-substituted spiroindazoles were formed selectively from alkyl hydrazones by ring closure with Vilsmeier reagent. The key step in the elaboration to the final products is the conversion of an intermediate olefin to the desired ketone through elimination of HBr from an <i>O-</i>methyl bromohydrin. This methodology enabled the synthesis of each desired regioisomer on 50–75 g scale with minimal purification. Acylation of the resultant spirocyclic amines provided potent ACC inhibitors

    Un incontro internazionale sugli effetti dell'innalzamento del livello marino

    No full text
    Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency. These structures can inform development of small molecule agonists of the GLP-1 receptor to treat type 2 diabetes

    Synthesis of Spiropiperidine Lactam Acetyl-CoA Carboxylase Inhibitors

    No full text
    The synthesis of 4′,6′-dihydrospiro­[piperidine-4,5′-pyrazolo­[3,4-<i>c</i>]­pyridin]-7′(2′<i>H</i>)-one-based acetyl-CoA carboxylase inhibitors is reported. The hitherto unknown N-2 <i>tert</i>-butyl pyrazolospirolactam core was synthesized from ethyl 3-amino-1<i>H</i>-pyrazole-4-carboxylate in a streamlined 10-step synthesis requiring only one chromatography procedure. The described synthetic strategy provides pyrazolo-fused spirolactams from halogenated benzylic arenes and cyclic carboxylates. Key steps include a regioselective pyrazole alkylation providing the N-2 <i>tert</i>-butyl pyrazole and a Curtius rearrangement under both conventional and flow conditions to install the hindered amine via a stable and isolable isocyanate. Finally, a Parham-type cyclization was used to furnish the desired spirolactam. An analogous route provided efficient access to the related N-1 isopropyl lactam series. Elaboration of the lactam cores via amidation enabled synthesis of novel ACC inhibitors and the identification of potent analogues

    Cyclic Penta- and Hexaleucine Peptides without <i>N</i>‑Methylation Are Orally Absorbed

    No full text
    Development of peptide-based drugs has been severely limited by lack of oral bioavailability with less than a handful of peptides being truly orally bioavailable, mainly cyclic peptides with <i>N</i>-methyl amino acids and few hydrogen bond donors. Here we report that cyclic penta- and hexa-leucine peptides, with no <i>N</i>-methylation and five or six amide NH protons, exhibit some degree of oral bioavailability (4–17%) approaching that of the heavily <i>N</i>-methylated drug cyclosporine (22%) under the same conditions. These simple cyclic peptides demonstrate that oral bioavailability is achievable for peptides that fall outside of rule-of-five guidelines without the need for <i>N</i>-methylation or modified amino acids

    Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    No full text
    Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of <b>9</b> as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound <b>9</b> to evaluate the role of DNL in human disease
    corecore