118 research outputs found

    Dynamics of a laminar plume in a cavity: The influence of boundaries on the steady state stem structure

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96724/1/ggge20016.pd

    The evolution of mantle plumes in East Africa

    Get PDF
    Global tomography models show a large low‐velocity anomaly extending from the core‐mantle boundary (CMB) beneath South Africa to the upper mantle in East Africa. Although it is believed that this anomaly is linked to mantle upwellings that control key surface features of the African continent, its origin and evolution are still debated. Here we assemble geochemical and seismological constraints along with information from new seismic analyses and geodynamic laboratory experiments to propose that presently there are at least two different plume heads beneath Afar and Kenya that originated at the CMB. A third plume between Kenya and Afar may have caused the Ethiopia‐Yemen traps 30 Ma, now merging with the Afar plume. We infer that the Afar plume is presently detached from the CMB probably because of an interaction with the subducted Tethyan slab and that it is likely a dying plume. This may imply that rifts along the Main Ethiopian Rift would fail by the loss of thermal sources, which consequently hampers continental breakup

    Wavelet-based directional analysis of the gravity field: evidence for large-scale undulations

    No full text
    International audienceIn the eighties, the analysis of satellite altimetry data leads to the major discovery of gravity lineations in the oceans, with wavelengths between 200 and 1400 km. While the existence of the 200 km scale undulations is widely accepted, undulations at scales larger than 400 km are still a matter of debate. In this paper, we revisit the topic of the large-scale geoid undulations over the oceans in the light of the satellite gravity data provided by the GRACE mission, considerably more precise than the altimetry data at wavelengths larger than 400 km. First, we develop a dedicated method of directional Poisson wavelet analysis on the sphere with significance testing, in order to detect and characterize directional structures in geophys-ical data on the sphere at different spatial scales. This method is particularly well suited for potential field analysis. We validate it on a series of synthetic tests, and then apply it to analyze recent gravity models, as well as a bathymetry data set independent from gravity. Our analysis confirms the existence of gravity undulations at large scale in the oceans, with characteristic scales between 600 and 2000 km. Their direction correlates well with present-day plate motion over the Pacific ocean, where they are particularly clear, and associated with a conjugate direction at 1500 km scale. A major finding is that the 2000 km scale geoid undulations dominate and had never been so clearly observed previously. This is due to the great precision of GRACE data at those wavelengths. Given the large scale of these undulations, they are most likely related to mantle processes. Taking into account observations and models from other geophysical information, as seismological tomography, convection and geochemical models and electrical conductivity in the mantle, we conceive that all these inputs indicate a directional fabric of the mantle flows at depth, reflecting how the history of subduction influences the organization of lower mantle upwellings

    Velocity Amplitudes in Global Convection Simulations: The Role of the Prandtl Number and Near-Surface Driving

    Full text link
    Several lines of evidence suggest that the velocity amplitude in global simulations of solar convection, U, may be systematically over-estimated. Motivated by these recent results, we explore the factors that determine U and we consider how these might scale to solar parameter regimes. To this end, we decrease the thermal diffusivity Îș\kappa along two paths in parameter space. If the kinematic viscosity Îœ\nu is decreased proportionally with Îș\kappa (fixing the Prandtl number Pr=Îœ/ÎșP_r = \nu/\kappa), we find that U increases but asymptotes toward a constant value, as found by Featherstone & Hindman (2016). However, if Îœ\nu is held fixed while decreasing Îș\kappa (increasing PrP_r), we find that U systematically decreases. We attribute this to an enhancement of the thermal content of downflow plumes, which allows them to carry the solar luminosity with slower flow speeds. We contrast this with the case of Rayleigh-Benard convection which is not subject to this luminosity constraint. This dramatic difference in behavior for the two paths in parameter space (fixed PrP_r or fixed Îœ\nu) persists whether the heat transport by unresolved, near-surface convection is modeled as a thermal conduction or as a fixed flux. The results suggest that if solar convection can operate in a high-PrP_r regime, then this might effectively limit the velocity amplitude. Small-scale magnetism is a possible source of enhanced viscosity that may serve to achieve this high-PrP_r regime.Comment: 34 Pages, 8 Figures, submitted to a special issue of "Advances in Space Research" on "Solar Dynamo Frontiers

    Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E(2 )from human articular chondrocytes

    Get PDF
    BACKGROUND: Sphingosine-1-phosphate (S1P), a downstream metabolite of ceramide, induces various bioactivities via two distinct pathways: as an intracellular second messenger or through receptor activation. The receptor for S1P (S1PR) is the family of Endothelial differentiation, sphingolipid G-protein-coupled receptor (EDG). We have here attempted to reveal the expression of EDG/S1PR in human articular chondrocytes (HAC), exploring the implications of S1P in cartilage degradation. METHODS: Articular cartilage specimens were obtained from patients with rheumatoid arthritis (RA), osteoarthritis (OA) or traumatic fracture (representing normal chondrocytes) who underwent joint surgery. Isolated HAC were cultured in vitro by monolayer and stimulated with S1P in the presence or absence of inhibitors of signaling molecules. Stimulated cells and culture supernatants were collected and subjected to analyses using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS: All of the tested HAC samples showed positive results in terms of EDG/S1PR expression in basal condition. When HAC was stimulated with S1P, a significant increase in prostaglandin (PG) E(2 )production was observed together with enhanced expression of cyclooxygenase (COX)-2. S1P stimulated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in HAC, and the PGE(2 )induction was abrogated by PD98059 and SB203580. Pertussis toxin inhibited the PGE(2 )induction from HAC by S1P, suggesting an essential role for Gi protein. S1P also attenuated the expression of proteoglycan aggrecan, a component of cartilage matrix, in HAC at transcriptional level. CONCLUSION: It was suggested that the S1P-induced PGE(2 )was at least in part involved in the aggrecan-suppressing effect of S1P, seeing as COX inhibitors attenuated the effect. Accordingly, S1P might play an important role in cartilage degradation in arthritides

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link
    • 

    corecore