2 research outputs found

    Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst

    No full text
    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag–Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20–40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst

    Effects of Controlled Crystalline Surface of Hydroxyapatite on Methane Oxidation Reactions

    No full text
    Hydroxyapatite (HAP, Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>) has a hexagonal prismatic structure that exposes two crystalline surfaces: prism-faceted a- and basal-faceted c-surfaces. In this work, the predominant exposure of c-surface was controlled, and its influences in methane oxidation reactions (combustion and oxidative coupling over HAP and lead-substituted HAP (Pb-HAP), respectively) were studied. The c-surface exposure was realized by crystal orientation in HAP-based catalyst film, which was created by an electrochemical deposition of HAP seeds on a titanium substrate, followed by hydrothermal crystallization and peeling off of the crystalline films from the substrate. In comparison to a-surface that is prevalently exposed in unoriented HAP-based catalysts, the c-surface (i.e., (002) crystalline plane) of HAP-based catalysts exhibited up to 47-fold enhancement in areal rate in both reactions. The distinct catalytic activity between these two crystalline surfaces is attributed to the preferential formation of oxide ions and vacancies on c-surfaces. The oxide ions and vacancies in turns function as actives sites for promoting methane activation and complete oxidation into CO<sub>2</sub>. Density functional theory calculations confirmed the close relationship between different catalytic activities in c-surface of oriented and a-surface of unoriented HAP through the tendency of vacancy formation. Without the presence of vacancies, the methyl or methylene group after methane activation forms ethane or ethylene via coupling. The present study explored the effects of HAP crystal orientation in methane oxidation reactions, which revealed distinct catalytic behaviors of crystal surfaces in HAP-based materials
    corecore