9 research outputs found

    DataSheet_1_Innovative prognostic modeling in ESCC: leveraging scRNA-seq and bulk-RNA for dendritic cell heterogeneity analysis.docx

    No full text
    BackgroundGlobally, esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type, characterized by its notably high rates of occurrence and mortality. Recent advancements in treatment methods, including immunotherapy, have shown promise, yet the prognosis remains poor. In the context of tumor development and treatment outcomes, the tumor microenvironment (TME), especially the function of dendritic cells (DCs), is significantly influential. Our study aims to delve deeper into the heterogeneity of DCs in ESCC using single-cell RNA sequencing (scRNA-seq) and bulk RNA analysis.MethodsIn the scRNA-seq analysis, we utilized the SCP package for result visualization and functional enrichment analysis of cell subpopulations. CellChat was employed to identify potential oncogenic mechanisms in DCs, while Monocle 2 traced the evolutionary trajectory of the three DC subtypes. CopyKAT assessed the benign or malignant nature of cells, and SCENIC conducted transcription factor regulatory network analysis, offering a preliminary exploration of DC heterogeneity. In Bulk-RNA analysis, we constructed a prognostic model for ESCC prognosis and immunotherapy response, based on DC marker genes. This model was validated through quantitative PCR (qPCR) and immunohistochemistry (IHC), confirming the gene expression levels.ResultsIn this study, through intercellular communication analysis, we identified GALECTIN and MHC-I signaling pathways as potential oncogenic mechanisms within dendritic cells. We categorized DCs into three subtypes: plasmacytoid (pDC), conventional (cDC), and tolerogenic (tDC). Our findings revealed that pDCs exhibited an increased proportion of cells in the G2/M and S phases, indicating enhanced cellular activity. Pseudotime trajectory analysis demonstrated that cDCs were in early stages of differentiation, whereas tDCs were in more advanced stages, with pDCs distributed across both early and late differentiation phases. Prognostic analysis highlighted a significant correlation between pDCs and tDCs with the prognosis of ESCC (PConclusionThis study enhances the understanding of dendritic cell heterogeneity in ESCC and its impact on patient prognosis. The insights gained from scRNA-seq and Bulk-RNA analysis contribute to the development of novel biomarkers and therapeutic targets. Our prognostic models based on DC-related gene signatures hold promise for improving ESCC patient stratification and guiding treatment decisions.</p

    Table_3_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    Table_2_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    Table_6_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    Table_1_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    Table_4_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    Table_5_Systematic assessment and optimizing algorithm of tumor mutational burden calculation and their implications in clinical decision-making.xlsx

    No full text
    Tumor mutation burden (TMB) has been validated as a biomarker to predict the response of immune checkpoint inhibitors (ICIs) treatment in various cancers. However, the effects of different sequencing platforms, cancer types, and calculation algorithms on TMB as well as its cut-off value for predicting immunotherapy efficacy in the East Asian population still need to be further investigated. In this study, the data of 4126 samples generated by targeted panel sequencing or whole-exome sequencing (WES) in different platforms and public sequencing data from 3680 samples that contained targeted panel sequencing, WES and whole-genome sequencing (WGS) were obtained. The impact of different sequencing platforms and methods on TMB calculation was assessed. No significant bias was found in TMB calculated by different platforms. However, TMB calculated from WGS was significantly lower than those calculated from targeted panel sequencing and WES. The distribution of TMB at different sequencing depths and tumor purity were analyzed. There was no significant difference in the distribution of TMB when the sequencing depth was greater than 500, the tumor purity estimated by hematoxylin-eosin (HE) staining was between 0.1-1.0 or estimated by next-generation sequencing (NGS) was greater than 0.4. In addition, the somatic-germline-zygosity (SGZ) algorithm was optimized to calculate TMB from tumor-only sequencing samples in the East Asian population. The correlation coefficient of TMB calculated with the optimized SGZ algorithm and paired normal-tumor sequencing is 0.951. Furthermore, the optimal cut-off value of TMB in East Asian lung cancer patients treated with ICIs was determined to be 7 mut/Mb instead of 10 mut/Mb through the ROC curve and Log-rank analysis in the training cohort and validated in the test cohort. Patients with TMB ≥ 7 mut/Mb had better outcomes than patients with TMB<7 mut/Mb. In conclusion, this study systematically analyzed the factors that influenced the TMB calculation and optimized the SGZ algorithm to calculate TMB from tumor-only sequencing samples in the East Asian population. More importantly, the cut-off value of TMB for predicting immunotherapy efficacy was determined to be 7 mut/Mb instead of 10 mut/Mb in East Asian lung cancer patients, which can help in clinical decision-making.</p

    DataSheet_1_Bibliometric analysis of global research trends on small-cell lung cancer (2012–2021).docx

    No full text
    BackgroundSmall-cell lung cancer (SCLC) is a recalcitrant tumor with a poor prognosis. With the rise of SCLC research in the past decade, this study aims to analyze the foundation and frontiers of SCLC research through bibliometric analysis.MethodsRelevant publications from the Web of Science Core Collection were retrieved on January 3, 2022. R package bibliometrix and EXCEL2019 were used to analyze quantitative variables. Bibliometric mapping was constructed by VOS viewer and CiteSpace software to visualize citation, co-authorship, co-occurrence, and co-citation analysis of countries/regions, organizations, authors, references, and keywords.ResultsA total of 2,361 publications related to SCLC were identified with the total amount of articles steadily increasing, where China is the most productive country with 859 papers. Scholars and organizations from the United States, China, and Europe are primary sources of this research, among which the University of Texas MD Anderson Cancer Center made the most contribution to the field with 122 papers. Lung Cancer published the highest number of SCLC-related articles with a total of 121, while the Journal of Thoracic Oncology received the most citations totaling 3,098. Rudin, Charles M., and Sage, Julien are the most creative author. Leora, Horn, 2018, New Engl J Med and Rudin, Charles M., Nat Genet, 2012 can be categorized as classic literature owing to their high citations or strong sigma value. “Heterogeneity & Subtypes” and “Immunotherapy” may be the new frontiers in the SCLC domain.ConclusionResearch on SCLC showed an upward trend based on the current global situation. Moreover, the current scope of collaboration in SCLC research is chiefly regional, which should further focus on transnational cooperation in the future. More attention should be devoted to “Heterogeneity & Subtypes” and “Immunotherapy”, which will be the hotspots in future research.</p
    corecore