7 research outputs found

    Field-Induced Single-Ion Magnets Based on Enantiopure Chiral β‑Diketonate Ligands

    No full text
    A pair of homochiral β-diketonate ligands (+)-3-trifluoroacetyl)­camphor (<i>d</i>-Htfc) and (−)-3-trifluoroacetyl)­camphor (<i>l</i>-Htfc) were used to construct two enantiomeric pairs of Dy­(III) single-ion magnets [Dy­(<i>d</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>d</i>-<b>1</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>l</i>-<b>1</b>) (bpy = 2,2′-bipyridine) and [Dy­(<i>d</i>-tfc)<sub>3</sub>(phen)]·2H<sub>2</sub>O (<i>d</i>-<b>2</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(phen)] (<i>l</i>-<b>2</b>) (phen = 1,10-phenanthroline). The capping aromatic <i>N</i>,<i>N</i>′-donors have a dramatic influence on the structural and magnetic characteristics of the Dy­(III) β-diketonate enantiomeric pairs: the cocrystal of two homochiral Dy­(III) β-diketonate stereoisomers with the 2,2′-bipyridine ligand was formed, showing field-induced single-ion magnet behaviors with a two-step relaxation process, while no stereoisomerization happened for the homochiral Dy­(III) β-diketonate with the 1,10-phenanthroline coligand, exhibiting a single relaxation process of the magnetization only. The anisotropy barriers of <i>d</i>-<b>1</b> (36.5 and 46.1 K) are slightly smaller than those of <i>l</i>-<b>1</b> (37.0 and 49.3 K), while <i>d</i>-<b>2</b> has a larger energy barrier (30.5 K) with respect to <i>l</i>-<b>2</b> (25.1 K)

    Field-Induced Single-Ion Magnets Based on Enantiopure Chiral β‑Diketonate Ligands

    No full text
    A pair of homochiral β-diketonate ligands (+)-3-trifluoroacetyl)­camphor (<i>d</i>-Htfc) and (−)-3-trifluoroacetyl)­camphor (<i>l</i>-Htfc) were used to construct two enantiomeric pairs of Dy­(III) single-ion magnets [Dy­(<i>d</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>d</i>-<b>1</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>l</i>-<b>1</b>) (bpy = 2,2′-bipyridine) and [Dy­(<i>d</i>-tfc)<sub>3</sub>(phen)]·2H<sub>2</sub>O (<i>d</i>-<b>2</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(phen)] (<i>l</i>-<b>2</b>) (phen = 1,10-phenanthroline). The capping aromatic <i>N</i>,<i>N</i>′-donors have a dramatic influence on the structural and magnetic characteristics of the Dy­(III) β-diketonate enantiomeric pairs: the cocrystal of two homochiral Dy­(III) β-diketonate stereoisomers with the 2,2′-bipyridine ligand was formed, showing field-induced single-ion magnet behaviors with a two-step relaxation process, while no stereoisomerization happened for the homochiral Dy­(III) β-diketonate with the 1,10-phenanthroline coligand, exhibiting a single relaxation process of the magnetization only. The anisotropy barriers of <i>d</i>-<b>1</b> (36.5 and 46.1 K) are slightly smaller than those of <i>l</i>-<b>1</b> (37.0 and 49.3 K), while <i>d</i>-<b>2</b> has a larger energy barrier (30.5 K) with respect to <i>l</i>-<b>2</b> (25.1 K)

    Field-Induced Single-Ion Magnets Based on Enantiopure Chiral β‑Diketonate Ligands

    No full text
    A pair of homochiral β-diketonate ligands (+)-3-trifluoroacetyl)­camphor (<i>d</i>-Htfc) and (−)-3-trifluoroacetyl)­camphor (<i>l</i>-Htfc) were used to construct two enantiomeric pairs of Dy­(III) single-ion magnets [Dy­(<i>d</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>d</i>-<b>1</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(bpy)]<sub>2</sub> (<i>l</i>-<b>1</b>) (bpy = 2,2′-bipyridine) and [Dy­(<i>d</i>-tfc)<sub>3</sub>(phen)]·2H<sub>2</sub>O (<i>d</i>-<b>2</b>)/[Dy­(<i>l</i>-tfc)<sub>3</sub>(phen)] (<i>l</i>-<b>2</b>) (phen = 1,10-phenanthroline). The capping aromatic <i>N</i>,<i>N</i>′-donors have a dramatic influence on the structural and magnetic characteristics of the Dy­(III) β-diketonate enantiomeric pairs: the cocrystal of two homochiral Dy­(III) β-diketonate stereoisomers with the 2,2′-bipyridine ligand was formed, showing field-induced single-ion magnet behaviors with a two-step relaxation process, while no stereoisomerization happened for the homochiral Dy­(III) β-diketonate with the 1,10-phenanthroline coligand, exhibiting a single relaxation process of the magnetization only. The anisotropy barriers of <i>d</i>-<b>1</b> (36.5 and 46.1 K) are slightly smaller than those of <i>l</i>-<b>1</b> (37.0 and 49.3 K), while <i>d</i>-<b>2</b> has a larger energy barrier (30.5 K) with respect to <i>l</i>-<b>2</b> (25.1 K)

    Field-Induced Relaxation of Magnetization in a Three-Dimensional LnMOF with the Second Bridging Ligand Squarate

    No full text
    A three-dimensional (3D) dysprosium­(III) metal-organic framework with nicotinate <i>N</i>-oxide (NNO<sup>–</sup>) and squarate (C<sub>4</sub>O<sub>4</sub><sup>2–</sup>) mixed bridging ligands, [Dy­(NNO)­(C<sub>4</sub>O<sub>4</sub>)­(H<sub>2</sub>O)]<i><sub>n</sub></i> (<b>1</b>), has been hydrothermally synthesized. The dysprosium­(III) ions are linked to each other by the squarate anions to form a unique dysprosium­(III) squarate double-layered network; the NNO<sup>–</sup> anions then bridge such layers to complete the 3D framework. Complex <b>1</b> exhibits a two-step relaxation of magnetization under a dc field of 1000 Oe, with effective energy barrier values of 8.5 and 14.3 K, respectively

    Syntheses, Crystal Structures, and Magnetic Properties of Two <i>p</i>-<i>tert</i>-Butylsulfonylcalix[4]arene Supported Cluster Complexes with a Totally Disordered Ln<sub>4</sub>(OH)<sub>4</sub> Cubane Core

    No full text
    Two new sandwich calix[4]­arene-supported cluster complexes, [Ln<sub>4</sub>(OH)<sub>4</sub>­(TBSOC)<sub>2</sub>­(H<sub>2</sub>O)<sub>4</sub>­(CH<sub>3</sub>OH)<sub>4</sub>]­·4H<sub>2</sub>O (H<sub>4</sub>TBSOC = <i>p</i>-<i>tert</i>-butylsulfonylcalix­[4]­arene; Ln = Dy, <b>1</b>; Ln = Ho, <b>2</b>), have been prepared and characterized. An X-ray crystallographic study reveals that both complexes contain a holistically disordered [Ln<sub>4</sub>(OH)<sub>4</sub>]<sup>8+</sup> cubane cluster core, which is sandwiched between two antiparallel calixarene macrocycles. Magnetic investigations indicate that complex <b>1</b> displays slow magnetization relaxation typical for single-molecule magnets in the absence of a static applied dc field, with the Δ<i><i>E</i>/k</i><sub>B</sub> parameter of 22.9 K, the largest value for the calixarene-supported pure 4f single-molecule magnets so far, whereas complex <b>2</b> does not show any relaxation of the magnetization above 2 K

    Syntheses, Crystal Structures, and Magnetic Properties of Two <i>p</i>-<i>tert</i>-Butylsulfonylcalix[4]arene Supported Cluster Complexes with a Totally Disordered Ln<sub>4</sub>(OH)<sub>4</sub> Cubane Core

    No full text
    Two new sandwich calix[4]­arene-supported cluster complexes, [Ln<sub>4</sub>(OH)<sub>4</sub>­(TBSOC)<sub>2</sub>­(H<sub>2</sub>O)<sub>4</sub>­(CH<sub>3</sub>OH)<sub>4</sub>]­·4H<sub>2</sub>O (H<sub>4</sub>TBSOC = <i>p</i>-<i>tert</i>-butylsulfonylcalix­[4]­arene; Ln = Dy, <b>1</b>; Ln = Ho, <b>2</b>), have been prepared and characterized. An X-ray crystallographic study reveals that both complexes contain a holistically disordered [Ln<sub>4</sub>(OH)<sub>4</sub>]<sup>8+</sup> cubane cluster core, which is sandwiched between two antiparallel calixarene macrocycles. Magnetic investigations indicate that complex <b>1</b> displays slow magnetization relaxation typical for single-molecule magnets in the absence of a static applied dc field, with the Δ<i><i>E</i>/k</i><sub>B</sub> parameter of 22.9 K, the largest value for the calixarene-supported pure 4f single-molecule magnets so far, whereas complex <b>2</b> does not show any relaxation of the magnetization above 2 K

    Arraying Octahedral {Cr<sub>2</sub>Dy<sub>4</sub>} Units into 3D Single-Molecule-Magnet-Like Inorganic Compounds with Sulfate Bridges

    No full text
    Two novel 3D pure inorganic compounds based on [Cr<sub>2</sub>Dy<sub>4</sub>(μ<sub>4</sub>-O)<sub>2</sub>(μ<sub>3</sub>-OH)<sub>4</sub>]<sup>10+</sup> cluster units and sulfate anions are presented. Both complexes exhibit single-molecule-magnet (SMM)-like behavior. Permutation of the magnetic moment direction among SMM-like cluster units has a significant effect on the performance of molecular nanomagnets, and directional consistency shows obvious advantages
    corecore