54 research outputs found

    Lightweight AE and HASH in a Single Round Function

    Get PDF
    To deal with message streams, which is required by many symmetric cryptographic functionalities (MAC, AE, HASH), we propose a lightweight round function called Thin Sponge. We give a framework to construct all these functionalities (MAC, AE, and HASH) using the same Thin Sponge round function. Besides the common security assumptions behind traditional symmetric algorithms, the security of our schemes depends on the hardness of problems to find collisions of some states. We give a class of constructions of Thin Sponge, which is improvement of the round function of Trivium and ACORN. We give simple criteria for determining parameters. According to these criteria, we give an example, which achieves all functionalities in a single round function and hence can be realized by the same hardware. Our algorithm is also efficient in software

    Security Analysis of Subterranean 2.0

    Get PDF
    Subterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption, MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and has been selected as a candidate in the second round of NIST\u27s lightweight cryptography standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-round permutation in the duplex. It is the simplicity of the round function that makes it an attractive target of cryptanalysis. In this paper, we examine the single-round permutation in various phases of Subterranean 2.0 and specify three related attack scenarios that deserve further investigation: keystream biases in the keyed squeezing phase, state collisions in the keyed absorbing phase, and one-round differential analysis in the nonce-misuse setting. To facilitate cryptanalysis in the first two scenarios, we novelly propose a set of size-reduced toy versions of Subterranean 2.0: Subterranean-m. Then we make an observation for the first time on the resemblance between the non-linear layer in the round function of Subterranean 2.0 and SIMON\u27s round function. Inspired by the existing work on SIMON, we propose explicit formulas for computing the exact correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-linear operations. We then construct our models for searching trails to be used in the keystream bias evaluation and state collision attacks. Our results show that most instances of Subterranean-m are secure in the first two attack scenarios but there exist instances that are not. Further, we find a flaw in the designers\u27 reasoning of Subterranean 2.0\u27s linear bias but support the designers\u27 claim that there is no linear bias measurable from at most 2962^{96} data blocks. Due to the time-consuming search, the security of Subterranean 2.0 against the state collision attack in keyed modes still remains an open question. Finally, we observe that one-round differentials allow to recover state bits in the nonce-misuse setting. By proposing nested one-round differentials, we obtain a sufficient number of state bits, leading to a practical state recovery with only 20 repetitions of the nonce and 88 blocks of data. It is noted that our work does not threaten the security of Subterranean 2.0

    Superposition Meet-in-the-Middle Attacks: Updates on Fundamental Security of AES-like Hashing

    Get PDF
    The Meet-in-the-Middle approach is one of the most powerful cryptanalysis techniques, demonstrated by its applications in preimage attacks on the full MD4, MD5, Tiger, HAVAL, and Haraka-512 v2 hash functions, and key recovery of the full block cipher KTANTAN. The success relies on the separation of a primitive into two independent chunks, where each active cell of the state is used to represent only one chunk or is otherwise considered unusable once mixed. We observe that some of such cells are linearly mixed and can be as useful as the independent ones. This leads to the introduction of superposition states and a whole suite of accompanied techniques, which we incorporate into the MILP-based search framework proposed by Bao et al. at EUROCRYPT 2021 and Dong et al. at CRYPTO 2021, and find applications on a wide range of AES-like hash functions and block ciphers

    New MILP Modeling: Improved Conditional Cube Attacks on Keccak-based Constructions

    Get PDF
    In this paper, we propose a new MILP modeling to find better or even optimal choices of conditional cubes, under the general framework of conditional cube attacks. These choices generally find new or improved attacks against the keyed constructions based on Keccak permutation and its variants, including Keccak-MAC, KMAC, Keyak, and Ketje, in terms of attack complexities or the number of attacked rounds. Interestingly, conditional cube attacks were applied to round-reduced Keccak-MAC, but not to KMAC despite the great similarity between Keccak-MAC and KMAC, and the fact that KMAC is the NIST standard way of constructing MAC from SHA-3. As examples to demonstrate the effectiveness of our new modeling, we report key recovery attacks against KMAC128 and KMAC256 reduced to 7 and 9 rounds, respectively; the best attack against Lake Keyak with 128-bit key is improved from 6 to 8 rounds in the nonce-respected setting and 9 rounds of Lake Keyak can be attacked if the key size is of 256 bits; attack complexity improvements are found generally on other constructions. Our new model is also applied to Keccak-based full-state keyed sponge and gives a positive answer to the open question proposed by Bertoni et al. whether cube attacks can be extended to more rounds by exploiting full-state absorbing. To verify the correctness of our attacks, reduced-variants of the attacks are implemented and verified on a PC practically. It is remarked that this work does not threaten the security of any full version of the instances analyzed in this paper

    Improved Linear (hull) Cryptanalysis of Round-reduced Versions of KATAN

    Get PDF
    KATAN is a family of block ciphers published at CHES 2009. Based on the Mixed-integer linear programming (MILP) technique, we propose the first third-party linear cryptanalysis on KATAN. Furthermore, we evaluate the security of KATAN against the linear attack without ignoring the dependence of the input bits of the 2×12\times 1 S-box(the AND operation). Note that in previous analysis, the dependence is not considered, and therefore the previous results are not accurate. Furthermore, the mounted 131/120-round attack on KATAN32/48 respectively by our 84/90-round linear hull is the best single-key known-plaintext attack. In addition, a best 94-round linear hull attack is mounted on KATAN64 by our 76-round linear hull

    New Properties of Double Boomerang Connectivity Table

    Get PDF
    The double boomerang connectivity table (DBCT) is a new table proposed recently to capture the behavior of two consecutive S-boxes in boomerang attacks. In this paper, we observe an interesting property of DBCT of S-box that the ladder switch and the S-box switch happen in most cases for two continuous S-boxes, and for some S-boxes only S-box switch and ladder switch are possible. This property implies an additional criterion for S-boxes to resist the boomerang attacks and provides as well a new evaluation direction for an S-box. Using an extension of the DBCT, we verify that some boomerang distinguishers of TweAES and Deoxys are flawed. On the other hand, inspired by the property, we put forward a formula for estimating boomerang cluster probabilities. Furthermore, we introduce the first model to search for boomerang distinguishers with good cluster probabilities. Applying the model to CRAFT, we obtain 9-round and 10-round boomerang distinguishers with a higher probability than that of previous works

    Exploiting Non-Full Key Additions: Full-Fledged Automatic Demirci-Selcuk Meet-in-the-Middle Cryptanalysis of SKINNY

    Get PDF
    The Demirci-Sel{\c{c}}uk meet-in-the-middle (DS-MITM) attack is a sophisticated variant of differential attacks. Due to its sophistication, it is hard to efficiently find the best DS-MITM attacks on most ciphers \emph{except} for AES. Moreover, the current automatic tools only capture the most basic version of DS-MITM attacks, and the critical techniques developed for enhancing the attacks (e.g., differential enumeration and key-dependent-sieve) still rely on manual work. In this paper, we develop a full-fledged automatic framework integrating all known techniques (differential enumeration, key-dependent-sieve, and key bridging, etc) for the DS-MITM attack that can produce key-recovery attacks directly rather than only search for distinguishers. Moreover, we develop a new technique that is able to exploit partial key additions to generate more linear relations beneficial to the attacks. We apply the framework to the SKINNY family of block ciphers and significantly improved results are obtained. In particular, all known DS-MITM attacks on the respective versions of SKINNY are improved by at least 2 rounds, and the data, memory, or time complexities of some attacks are reduced even compared to previous best attacks penetrating less rounds

    Diving Deep into the Preimage Security of AES-like Hashing

    Get PDF
    Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic model on AES-like hashing. (1) We introduce S-box linearization to MITM pseudo-preimage attacks on AES-like hashing. The technique suits perfectly with superposition states to preserve information after S-box with an affordable cost. (2) We propose distributed initial structures, an extension on the original concept of initial states, that selects initial degrees of freedom in a more versatile manner to enlarge the search space. (3) We exploit the structural similarities between encryption and key schedule in constructions (e.g. Whirlpool and Streebog) to model propagations more accurately and avoid repeated costs. Weaponed with these innovative techniques, we further empower the MITM framework and improve the attack results on AES-like designs for preimage and collision. We obtain the first preimage attacks on 10-round AES-192, 10-round Rijndael-192/256, and 7.75-round Whirlpool, reduced time and/or memory complexities for preimage attacks on 5-, 6-round Whirlpool and 7.5-, 8.5-round Streebog, as well as improved collision attacks on 6- and 6.5-round Whirlpool
    • …
    corecore