767 research outputs found

    Comment on "New modes of halo excitations in the 6He nucleus"

    Get PDF
    We try to explain the differences in the 6He dipole strength function in refs. [1] and [2]. We perform the full basis calculation of the strength function with the same renormalized interaction as in [1] and show that the size of the basis, needed for converged calculations of the 6He continuum spectrum, is much larger than that for the discrete spectrum. The renormalized interaction of [1] therefore cannot be used for the continuum spectrum calculations with the same basis as for the ground state.Comment: 2 pages, 3 figure

    Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

    Get PDF
    Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (0,2)(\ket{0},\ket{2}) subspace of a three-level transmon fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (0,2)(\ket{0},\ket{2}) subspace

    Two-proton radioactivity and three-body decay. III. Integral formulae for decay widths in a simplified semianalytical approach

    Full text link
    Three-body decays of resonant states are studied using integral formulae for decay widths. Theoretical approach with a simplified Hamiltonian allows semianalytical treatment of the problem. The model is applied to decays of the first excited 3/23/2^{-} state of 17^{17}Ne and the 3/23/2^{-} ground state of 45^{45}Fe. The convergence of three-body hyperspherical model calculations to the exact result for widths and energy distributions are studied. The theoretical results for 17^{17}Ne and 45^{45}Fe decays are updated and uncertainties of the derived values are discussed in detail. Correlations for the decay of 17^{17}Ne 3/23/2^- state are also studied.Comment: 19 pages, 20 figure

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He^* and charge-exchange 6^6Li(n,p)6^6He^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps

    Analytical E1 strength functions of two-neutron halo nuclei: the 6-He example

    Get PDF
    An analytical model is developed to study the spectra of electromagnetic dissociation of two-neutron halo nuclei without precise knowledge about initial and final states. Phenomenological three-cluster bound state wave functions, reproducing the most relevant features of these nuclei, are used along with no interaction final states. The 6-He nucleus is considered as a test case, and a good agreement with experimental data concerning the shape of the spectrum and the magnitude of the strength function is found.Comment: 19 pages, 4 figures Accepted for publishing in Nuclear Physics

    Quantum sensing with tunable superconducting qubits: optimization and speed-up

    Full text link
    Sensing and metrology play an important role in fundamental science and applications by fulfilling the ever-present need for more precise data sets and by allowing researchers to make more reliable conclusions on the validity of theoretical models. Sensors are ubiquitous. They are used in applications across a diverse range of fields including gravity imaging, geology, navigation, security, timekeeping, spectroscopy, chemistry, magnetometry, healthcare, and medicine. Current progress in quantum technologies has inevitably triggered the exploration of the use of quantum systems as sensors with new and improved capabilities. This article describes the optimization of the quantum-enhanced sensing of external magnetic fluxes with a Kitaev phase estimation algorithm based on a sensor with tunable transmon qubits. It provides the optimal flux biasing point for sensors with different maximal qubit transition frequencies. An estimation of decoherence rates is made for a given design. The use of 22- and 33-qubit entangled states for sensing are compared in simulation with the single qubit case. The flux sensing accuracy reaches 108Φ010^{-8}\cdot\Phi_0 and scales with time as  1/t\sim\ 1/t which proves the speed-up of sensing with high ultimate accuracy.Comment: 13 pages, 7 figures, 1 table. arXiv admin note: substantial text overlap with arXiv:2103.1102

    Asymptotic representation of a solution to a singular perturbation linear time-optimal problem

    Full text link
    A time-optimal control problem is considered for a linear system with fast and slow variables and smooth geometric constraints on the control. An asymptotic expansion of the optimal time up to the second order of smallness is constructed and validated. © 2013 Pleiades Publishing, Ltd
    corecore