2 research outputs found

    Tip-Functionalized Au@Ag Nanorods as Ultrabright Surface-Enhanced Raman Scattering Probes for Bioimaging in Off-Resonance Mode

    No full text
    Surface-enhanced Raman scattering (SERS) performance of Au nanorods (AuNRs) can be enhanced by the tip adsorption of Raman molecules (RMs) through anisotropic polymer stabilization or through the embedding of RMs between AuNR cores and Ag shells of AuNR@RM@Ag composite particles. We propose a new strategy to design ultrabright SERS probes composed of high-aspect-ratio AuNRs with anisotropic Ag coatings, with preferred adsorption of RMs to open AuNR tips. Specifically, for 4-nitrobenzenethiol (NBT) concentrations above a threshold value <i>c</i> > <i>c</i><sub>tr</sub>, the fabricated Au@NBT@Ag particles had NBT-functionalized open Au tips, as well as anisotropic Ag shells grown on the AuNR sides. The SERS response of these probes with an optimal Ag shell was highest in the off-resonance mode, when the excitation wavelength was far from the plasmon resonance of the Au@NBT@Ag composites. Growing the Ag shell further to completely cover the AuNRs decreased the SERS enhancement. For biocompatibility and stability, the probes were additionally covered with a thin silica layer. Under optimal conditions, the probes demonstrated superstrong and superstable SERS spectra, as compared to those from common SERS tags (AuNRs, nanostars, and Au@Ag NRs) with surface-adsorbed NBT. The excellent SERS performance of the developed ultrabright probes is illustrated by single-particle detection of SERS spectra, Raman imaging of living cells, and deep tissue imaging

    Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides

    No full text
    A wet-chemical approach is used to fabricate centimeter-scale gold nanoisland films (NIFs) with tunable morphology of islands and with strong electromagnetic coupling between them. The approach consists in a uniform seeding of small gold nanoparticles on a glass or silicon substrate, followed by controllable growth of the seeds into small nanoislands. A special technique for TEM sampling was developed to follow the gradual formation of larger-sized isolated nanoparticles, nanoislands of sintered overgrown seeds, and a complete gold layer with nanoscale cracks. The electromagnetic field distribution inside the fabricated NIFs was calculated by FDTD simulations applied to actual TEM images of the fabricated samples rather than to artificial models commonly used. SERS measurements with 1,4-aminothiophenol (ATP) molecules demonstrated the analytical enhancement factor about of 10<sup>7</sup> and the fundamental enhancement factor about of 10<sup>8</sup> for optimized substrates. These values were at least 1 order of magnitude higher than that for self-assembled arrays of gold nanostars and silver nanocubes. SERS spectra of independent samples demonstrated good sample-to-sample reproducibility in terms of the relative standard deviation (RSD) of the main peaks less than 20%. Additionally, Raman maps with 1 μm increment in <i>X</i>–<i>Y</i> directions of NIFs (800 spectral spots) demonstrated good point-to-point repeatability in the intensity of the main Raman vibration modes (RSD varied from 5% to 15% for 50 randomly selected points). A real-life application of the fabricated SERS substrates is exemplified by the detection of the thiram fungicide in apple peels within the 5–250 ppb linear detection range. Specifically, the NIF-based SERS technology detected thiram on apple peel down to level of 5 ng/cm<sup>2</sup>
    corecore