3,951 research outputs found

    Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    Get PDF
    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft

    Simplified Waterproofing of Aerogels

    Get PDF
    A relatively simple silanization process has been developed for waterproofing or rewaterproofing aerogels, xerogels, and aerogel/tile composites, and other, similar low-density, highly microporous materials. Such materials are potentially attractive for a variety of applications especially for thermal-insulation panels that are required to be thin and lightweight. Unfortunately, such materials are also hydrophilic and tend to collapse after adsorbing water from the air. Hence, an effective means of waterproofing is necessary to enable practical exploitation of aerogels and the like. Older processes for waterproofing aerogels are time-consuming, labor-intensive, and expensive, relative to the present process. Each of the older processes includes a number of different chemical treatment steps, and some include the use of toxic halogenated surface-modifying compounds, pressures as high as hundreds of atmospheres, and/or temperatures as high as 1,000 C

    Entanglement vs. gap for one-dimensional spin systems

    Full text link
    We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap Delta is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small Delta. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/Delta, whereas previously studied systems, such as free fermion systems or systems described by conformal field theory, had the entropy of all intervals bounded by a constant times log(1/Delta).Comment: 16 pages. v2 is final published version with slight clarification

    Secondary polymer layered impregnated tile

    Get PDF
    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues

    Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks

    Full text link
    Top quarks, produced in large numbers at the Large Hadron Collider, have a complex detector signature and require special reconstruction techniques. The most common decay mode, the "all-jet" channel, results in a 6-jet final state which is particularly difficult to reconstruct in pppp collisions due to the large number of permutations possible. We present a novel approach to this class of problem, based on neural networks using a generalized attention mechanism, that we call Symmetry Preserving Attention Networks (SPA-Net). We train one such network to identify the decay products of each top quark unambiguously and without combinatorial explosion as an example of the power of this technique.This approach significantly outperforms existing state-of-the-art methods, correctly assigning all jets in 93.093.0% of 66-jet, 87.887.8% of 77-jet, and 82.682.6% of ≥8\geq 8-jet events respectively.Comment: 8pages, submitted to PRL, revised version with updated result

    Low-density resin impregnated ceramic article and method for making the same

    Get PDF
    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers

    Proposed New Antiproton Experiments at Fermilab

    Full text link
    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.Comment: 6 pages, 2 figures, to appear in Proceedings of IXth International Conference on Low Energy Antiproton Physics (LEAP'08), Vienna, Austria, September 16 to 19, 200

    Organopolysiloxane Waterproofing Treatment for Porous Ceramics

    Get PDF
    Rigid and flexible porous ceramics, including thermal insulation of a type used on space vehicles, are waterproofed by a treatment which comprises applying an aqueous solution of an organopolysiloxane water-proofing agent having reactive silanol groups to the surface of the ceramic and then heating the treated ceramic to form a waterproofed ceramic. The organopolysiloxane is formed by the hydrolysis and partial condensation of di- and trialkoxyfunctional alkylalkoxysilanes having 1-10 carbon atom hydrocarbyl groups
    • …
    corecore