20,650 research outputs found

    Low-Speed Wind-Tunnel Test of an Unpowered High-Speed Stoppable Rotor Concept in Fixed-Wing Mode

    Get PDF
    An experimental investigation of the M85, a High Speed Rotor Concept, was conducted at the NASA Langley 14 x 22 foot Subsonic Tunnel, assisted by NASA-Ames. An unpowered 1/5 scale model of the XH-59A helicopter fuselage with a large circular hub fairing, two rotor blades, and a shaft fairing was used as a baseline configuration. The M85 is a rotor wing hybrid aircraft design, and the model was tested with the rotor blade in the fixed wing mode. Assessments were made of the aerodynamic characteristics of various model rotor configurations. Variation in configurations were produced by changing the rotor blade sweep angle and the blade chord length. The most favorable M85 configuration tested included wide chord blades at 0 deg sweep, and it attained a system lift to drag ratio of 8.4

    Theory of the Three Dimensional Quantum Hall Effect in Graphite

    Full text link
    We predict the existence of a three dimensional quantum Hall effect plateau in a graphite crystal subject to a magnetic field. The plateau has a Hall conductivity quantized at 4e21c0\frac{4e^2}{\hbar} \frac{1}{c_0} with c0c_0 the c-axis lattice constant. We analyze the three-dimensional Hofstadter problem of a realistic tight-binding Hamiltonian for graphite, find the gaps in the spectrum, and estimate the critical value of the magnetic field above which the Hall plateau appears. When the Fermi level is in the bulk Landau gap, Hall transport occurs through the appearance of chiral surface states. We estimate the magnetic field necessary for the appearance of the three dimensional quantum Hall Effect to be 15.415.4 T for electron carriers and 7.07.0 T for hole carriers.Comment: Several new references adde

    Chimera States for Coupled Oscillators

    Full text link
    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera.Comment: 4 pages, 4 figure

    Development of a facility using robotics for testing automation of inertial instruments

    Get PDF
    The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment

    Statistical Properties of Avalanches in Networks

    Full text link
    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated `excitation' of a network node, which may, with some probability, then stimulate subsequent firings of the nodes to which it is connected, resulting in a cascade of firings. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches), are robust to complex underlying network topologies.Comment: 11 pages, 7 figure

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR

    ROSAT and ASCA observations of the Crab-Like Supernova Remnant N157B in the Large Magellanic Cloud

    Get PDF
    We report the results of ROSAT and ASCA X-ray observations of the supernova remnant N157B (or 30 Dor B, SNR 0539-69.1) in the Large Magellanic Cloud. For comparison, we also briefly describe the results on SNR 0540-69.3, the only confirmed Crab-like remnant in the Cloud. The X-ray emission from N157B can be decomposed into a bright comet-shaped feature, superimposed on a diffuse emission region of a dimension 20\sim 20 pc. The flat and nearly featureless spectrum of the remnant is distinctly different from those of young shell-like remnants, suggesting a predominantly Crab-like nature of N157B. Characterized by a power law with an energy slope 1.5\sim 1.5, the spectrum of N157B above 2\sim 2 keV is, however, considerably steeper than that of SNR 0540-69.3, which has a slope of 1.0\sim 1.0. At lower energies, the spectrum of N157B presents marginal evidence for emission lines, which if real most likely arise in hot gas of the diffuse emission region. The hot gas has a characteristic thermal temperature of 0.4-0.7 keV. No significant periodic signal is detected from N157B in the period range of 3×10320003 \times 10^{-3}-2000 s. The pulsed fraction is 9\lesssim 9% (99% confidence) in the 272-7 keV range. We discuss the nature of the individual X-ray components. In particular, we suggest that the synchrotron radiation of relativistic particles from a fast-moving (103kms1\sim 10^3 km s^{-1}) pulsar explains the size, morphology, spectrum, and energetics of the comet-shaped X-ray feature. We infer the age of the remnant as 5×103\sim 5 \times 10^3 yrs. The lack of radio polarization of the remnant may be due to Faraday dispersion by foreground \ion{H}{2} gas.Comment: To be published in The Astrophysical Journal, 21 pages, plus 11 images in the PS, GIF, or jpeg format. Postscript files of images are available at http://www.astro.nwu.edu/astro/wqd/paper/n157b

    Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture

    Full text link
    We carry out experiments on single-molecule junctions at low temperatures, using the mechanically controlled break junction technique. Analyzing the results received with more than ten different molecules the nature of the first peak in the differential conductance spectra is elucidated. We observe an electronic transition with a vibronic fine structure, which is most frequently smeared out and forms a broad peak. In the usual parameter range we find strong indications that additionally fluctuations become active even at low temperatures. We conclude that the electrical field feeds instabilities, which are triggered by the onset of current. This is underscored by noise measurements that show strong anomalies at the onset of charge transport
    corecore