321 research outputs found

    How complex are intracellular immune receptor signaling complexes?

    Get PDF
    Nucleotide binding leucine-rich repeat proteins (NLRs) are the major class of intracellular immune receptors in plants. NLRs typically function to specifically recognize pathogen effectors and to initiate and control defense responses that severely limit pathogen growth in plants (termed effector-triggered immunity, or ETI). Despite numerous reports supporting a central role in innate immunity, the molecular mechanisms driving NLR activation and downstream signaling remain largely elusive. Recent reports shed light on the pre- and post-activation dynamics of a few NLR-containing protein complexes. Recent technological advances in the use of proteomics may enable high-resolution definition of immune protein complexes and possible activation-relevant post-translational modifications of the components in these complexes. In this review, we focus on research aimed at characterizing pre- and post-activation NLR protein complexes and the molecular events that follow activation. We discuss the use of new or improved technologies as tools to unveil the molecular mechanisms that define NLR-mediated pathogen recognition

    NB-LRR proteins: pairs, pieces, perception, partners, and pathways

    Get PDF
    In plants, many of the innate immune receptors or disease resistance (R) proteins contain a NB-LRR (Nucleotide-binding site, Leucine-rich repeat) structure. The recent findings regarding NB-LRR signaling are summarized in this article. An emerging theme is that two NB-LRRs can function together to mediate disease resistance against pathogen isolates. Also, recent results delineate which NB-LRR protein fragments are sufficient to initiate defense signaling. Importantly, distinct fragments of different NB-LRRs are sufficient for function. Finally, we describe the new roles of accessory proteins and downstream host genes in NB-LRR signaling

    Arabidopsis and the plant immune system

    Get PDF
    Understanding the fundamental mechanisms of plant disease resistance is of central importance to sustainable agriculture and human health. Use of the model plant Arabidopsis thaliana has resulted in an explosion of information regarding both disease resistance and susceptibility to pathogens. The last 20 years of research have demonstrated the commonalities between Arabidopsis and crop species. In this review, commemorating the 10th anniversary of the sequencing of the Arabidopsis genome, we will address some of the insights derived from the use of Arabidopsis as a model plant pathology system

    Learning Microbial Interaction Networks from Metagenomic Count Data

    Get PDF
    Abstract Many microbes associate with higher eukaryotes and impact their vitality. To engineer microbiomes for host benefit, we must understand the rules of community assembly and maintenance that, in large part, demand an understanding of the direct interactions among community members. Toward this end, we have developed a Poisson-multivariate normal hierarchical model to learn direct interactions from the count-based output of standard metagenomics sequencing experiments. Our model controls for confounding predictors at the Poisson layer and captures direct taxon–taxon interactions at the multivariate normal layer using an ℓ1 penalized precision matrix. We show in a synthetic experiment that our method handily outperforms state-of-the-art methods such as SparCC and the graphical lasso (glasso). In a real in planta perturbation experiment of a nine-member bacterial community, we show our model, but not SparCC or glasso, correctly resolves a direct interaction structure among three community members that ..

    RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis

    Get PDF
    In Arabidopsis, RPM1 confers resistance against Pseudomonas syringae expressing either of two sequence unrelated type III effectors, AvrRpm1 or AvrB. An RPM1-interacting protein (RIN4) coimmunoprecipitates from plant cell extracts with AvrB, AvrRpm1, or RPM1. Reduction of RIN4 protein levels inhibits both the hypersensitive response and the restriction of pathogen growth controlled by RPM1. RIN4 reduction causes diminution of RPM1. RIN4 reduction results in heightened resistance to virulent Peronospora parasitica and P. syringae, and ectopic defense gene expression. Thus, RIN4 positively regulates RPM1-mediated resistance yet is, formally, a negative regulator of basal defense responses. AvrRpm1 and AvrB induce RIN4 phosphorylation. This may enhance RIN4 activity as a negative regulator of plant defense, facilitating pathogen growth. RPM1 may "guard" against pathogens that use AvrRpm1 and AvrB to manipulate RIN4 activity

    The molecular basis of host specialization in bean pathovars of Pseudomonas syringae

    Get PDF
    Biotrophic phytopathogens are typically limited to their adapted host range. In recent decades, investigations have teased apart the general molecular basis of intraspecific variation for innate immunity of plants, typically involving receptor proteins that enable perception of pathogen-associated molecular patterns or avirulence elicitors from the pathogen as triggers for defense induction. However, general consensus concerning evolutionary and molecular factors that alter host range across closely related phytopathogen isolates has been more elusive. Here, through genome comparisons and genetic manipulations, we investigate the underlying mechanisms that structure host range across closely related strains of Pseudomonas syringae isolated from different legume hosts. Although type III secretionindependent virulence factors are conserved across these three strains, we find that the presence of two genes encoding type III effectors (hopC1 and hopM1) and the absence of another (avrB2) potentially contribute to host range differences between pathovars glycinea and phaseolicola. These findings reinforce the idea that a complex genetic basis underlies host range evolution in plant pathogens. This complexity is present even in host–microbe interactions featuring relatively little divergence among both hosts and their adapted pathogens

    A new eye on NLR proteins: focused on clarity or diffused by complexity?

    Get PDF
    The nucleotide-binding domain leucine-rich repeat proteins (NLRs) represent the major class of intracellular innate immune receptors in plants and animals. Understanding their functions is a major challenge in immunology. This review highlights recent efforts toward elucidating NLR functions in human and plants. We compare unconventional aspects of NLR proteins across the two kingdoms. We review recent advances describing P-loop independent activation, nuclear-cytoplasmic trafficking, oligomerization and multimerization requirements for signaling, and for expanded functions beyond pathogen recognition by several NLR proteins

    A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudomonas syringae </it>is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of <it>P. syringae </it>strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. <it>P. syringae </it>pathovar <it>tabaci </it>naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean.</p> <p>Results</p> <p>We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for <it>P. syringae </it>pathovar <it>tabaci </it>strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72%) had no significant sequence similarity to those encoded by the three previously fully sequenced <it>P. syringae </it>genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced <it>P. syringae </it>strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the <it>hrpZ1 </it>gene is partially deleted and <it>hopAF1 </it>is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that <it>hopO1, hopT1, hopAH1</it>, <it>hopM1'</it>, <it>hopAE1</it>, <it>hopAR1</it>, and <it>hopAI1' </it>are part of the virulence-associated HrpL regulon, though the <it>hopAI1' </it>and <it>hopM1' </it>sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of <it>avrPto1</it>.</p> <p>Conclusion</p> <p>The draft genome sequence facilitates the continued development of <it>P. syringae </it>pathovar <it>tabaci </it>on wild tobacco as an attractive model system for studying bacterial disease on plants. The catalogue of effectors sheds further light on the evolution of pathogenicity and host-specificity as well as providing a set of molecular tools for the study of plant defence mechanisms. We also discovered several large genomic regions in <it>Pta </it>11528 that do not share detectable nucleotide sequence similarity with previously sequenced <it>Pseudomonas </it>genomes. These regions may include horizontally acquired islands that possibly contribute to pathogenicity or epiphytic fitness of <it>Pta </it>11528.</p
    • 

    corecore