28 research outputs found

    A quasi real-time approach to investigating the damage and fracture process in plain concrete by X-ray tomography

    Get PDF
    In most concrete-related computer tomography (CT) experiments, detailed information on the damage and fracture process is obtained using nonreal-time approaches, with the CT method constantly regarded as a qualitative method. This study develops a quasi real-time method with the use of experimental instruments. The average CT number is used to analyse the damage and fracture process in concrete specimens and the theory that underlies concrete damage and fracture is improved. Various characteristics of the fracture form in different loading cases are investigated at the macro and micro levels. This study provides a convenient and fast method for qualitatively and quantitatively analysing concrete. First published online: 01 Jun 201

    An analysis of thixotropic micropore variation and its mechanism in loess

    Get PDF
    The relationship between the thixotropic mechanism and the macroscopic thixotropic strength can be clarified by analyzing the changes in microstructure and pores in the loess thixotropic process. This approach is of significant importance for calculating the strength of compacted loess foundations. In the present study, a representative sample prepared from Xi’an loess was analyzed and eight resting ages were set. The micropore characteristics of the remolded loess and undisturbed loess at different resting ages were obtained using electron microscope observation and nuclear magnetic resonance testing. The results indicate that the thixotropy in the prepared loess samples is significant. It is also found that as the resting age grew, newly formed cements in the remolded loess continuously accumulated and filled in the microcracks between the aggregates. Consequently, the contact area of aggregates increased, thereby decreasing the width and length of the microcracks. The proportion of cementation pore and small microcracks gradually increased, while the proportion of large microcracks gradually decreased, indicating that thixotropy increased the cohesive force and friction force of soil structure at the mesoscale. This phenomenon also explains the increase of thixotropic strength at the macroscopic scale. The mesoscopic mechanism of loess thixotropic strength recovery is that the connection between soil particles is re-established after the break of the clay particle–water–charge system. Moreover, the elastic potential energy of soil particles generated by compression promoted the polymerization of clay particles dispersed in a pore water solution to produce flocculating aggregates during resting dissipation. The continuous consumption of clay particles expanded the processing time and flocs and continuously decreased the strength growth rate

    Numerical Analysis of Instability Mechanism of a High Slope under Excavation Unloading and Rainfall

    No full text
    High slope simulation analysis is an essential means of slope engineering design, construction, and operation management. It is necessary to master slope dynamics, ensure slope safety, analyze slope instability mechanisms, and carry out slope stability early warning and prediction. This paper, aiming at the landslide phenomenon of the high slope on the left bank of a reservoir project, considering the influence of stratum lithology, fault, excavation unloading, rainfall, and water storage, establishes a refined finite element model that reflects the internal structure of the slope. The fluid-solid coupling numerical simulation analysis of the high slope is carried out. Based on this, the failure mechanism of the slope under excavation unloading and heavy rainfall is explained. The application of an engineering example shows that under the combined action of excavation unloading and rainfall infiltration, the in-plane saturation of the structure formed at fault at the trailing edge of the excavation slope surface increases, the pore water pressure increases, and the shear strain concentration area appears at the internal structural surface of the slope. The shear strain concentration area extends along the structural surface to the front and rear edges of the slope, resulting in landslide damage

    Numerical Analysis of Instability Mechanism of a High Slope under Excavation Unloading and Rainfall

    No full text
    High slope simulation analysis is an essential means of slope engineering design, construction, and operation management. It is necessary to master slope dynamics, ensure slope safety, analyze slope instability mechanisms, and carry out slope stability early warning and prediction. This paper, aiming at the landslide phenomenon of the high slope on the left bank of a reservoir project, considering the influence of stratum lithology, fault, excavation unloading, rainfall, and water storage, establishes a refined finite element model that reflects the internal structure of the slope. The fluid-solid coupling numerical simulation analysis of the high slope is carried out. Based on this, the failure mechanism of the slope under excavation unloading and heavy rainfall is explained. The application of an engineering example shows that under the combined action of excavation unloading and rainfall infiltration, the in-plane saturation of the structure formed at fault at the trailing edge of the excavation slope surface increases, the pore water pressure increases, and the shear strain concentration area appears at the internal structural surface of the slope. The shear strain concentration area extends along the structural surface to the front and rear edges of the slope, resulting in landslide damage

    A Study of the Relationship between the Stress State and Failure Mode of Concrete Specimens

    No full text
    An investigation of concrete specimen’s strength and its changing mechanism based on numerical simulation of the failure process of axis-stressed concrete specimens with different aspect ratios was described. The state of internal stress and growth of crack of axis-stressed concrete specimens, as well as the changing mechanism of specimen strength under different ambient pressure values, were investigated. The results revealed that specimen strength and failure surface decreased as the aspect ratio is increased. The specimen strength is dependent on the state of internal stress and decreased with decreasing ambient pressure. Additionally, the failure mode shifted from shear failure to tensile failure gradually

    Improved random aggregate model for numerical simulations of concrete engineering simulations of concrete engineering

    No full text
    In numerical simulations, concrete is usually considered as a three-phase material consisting of an aggregate, a cement matrix, and an interfacial transition zone (ITZ). Three-dimensional modeling of concrete usually requires extremely large computational requirements. In this study, an improved random aggregate model for numerical simulations of concrete is developed, which can minimize the number of elements, optimize the ITZ thickness, and create internal cracks and holes. Numerical investigations on the cracks form as well as deflection and tensile strength are also conducted based on three-point bending tests. The simulation results agree well with the experimental results

    Experimental Study on the Flexural Behavior of Connected Precast Concrete Square Piles

    No full text
    Part of deep foundation pit support engineering needs to select connected precast concrete square piles (CPCSPs). Under the premise that the quality of precast concrete square piles (PCSPs) meets engineering requirements, the quality of CPCSPs becomes the key factor to ensure the safety of foundation pit support structures. This paper puts forward a new connection technology of CPCSPs and carries out the flexural behavior experiment of unconnected precast concrete square piles (UPCSPs) and CPCSPs. The distribution of crack and strain on different surfaces of UPCSPs and CPCSPs are measured by carbon fiber composite strain sense optical cables, glass fiber composite strain sense optical cables, and fixed-point polyurethane strain sense optical cables. The anti-crack load, ultimate load, bending moment, and flexural deformation of UPCSPs and CPCSPs are measured. The experimental results of UPCSPs and CPCSPs are compared. The results show that the anti-crack strength of CPCSPs is greatly increased while the flexural deformation of CPCSPs is decreased before the occurrence of crack. With the development of crack (failure stage), the outside areas of hoop steel plate exhibit cracks. At this moment, the strength of CPCSPs is no longer controlled by the strength of middle areas. The ultimate strength of CPCSPs is basically equivalent to that of UPCSPs. The ultimate bending moment of CPCSPs is higher than its design value (about 66%∼76%). The selection of CPCSPs in the design of foundation pit support has good reliability

    Effect of Intermediate Principal Stress on the Bearing Capacity of Footings in Soft Rock

    No full text
    The bearing capacity for footings is a fundamental scientific problem in civil engineering. The evaluation of the bearing capacity of footings usually does not take into account the effect of the intermediate principal stress. In practice, the intermediate principal stress has certain influences on the strength of geomaterials (e.g., rock and soil) or concrete. In this paper, a series of numerical solutions are presented to evaluate the bearing capacity of footings in a soft rock foundation via a two-dimensional finite difference code (FLAC) with a strain hardening/softening constitutive model based on the unified strength theory (UST). The values of the bearing capacity factor Nc and Nγ for strip, circular and square footings in a soft rock foundation were evaluated using the strain hardening/softening constitutive model. The effect of the intermediate principal stress on the bearing capacity of strip, circular and square footings in a soft rock foundation was analyzed. The results of the numerical computation show that the intermediate principal stress has a significant influence on the bearing capacity and failure mechanisms of a soft rock medium. The influence of the intermediate principal stress on the peak and residual values of the bearing capacity for a strip footing is much greater than for circular and square footings. Research works for the reasonable estimation of the bearing capacity of footings in soft rock are facilitated by this study

    Using X-Ray CT Scanning to Study the Failure Mechanism of Concrete under Static and Dynamic Loadings

    No full text
    X-ray images can be used to nondestructively monitor the initiation, extension, and combination of cracks in concrete. In this study, real-time X-ray computed tomography (CT) scanning of concrete specimens under static and dynamic loadings was done. The CT images showed the growth, propagation, and penetration of the cracks and showed the ultimate failure of the concrete samples. Analysis of the CT images and CT numbers showed that the failure followed the structure’s areas of weakness under the static load, but for dynamic loading, the cracks formed very rapidly along straight lines through the aggregate
    corecore