20 research outputs found

    Molecular analysis of intact preen waxes of Calidris canutus (Aves:Scolopacidae) by gas chromatography/mass spectrometry

    Get PDF
    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing additional resolution to the analysis of wax esters. The C-21-C-32 wax esters are composed of complex mixtures of hundreds of individual isomers. The odd carbon-numbered wax esters are predominantly composed of even carbon-numbered n-alcohols (C-14, C-16, and C-18) esterified predominantly with odd carbon-numbered 2-methyl fatty acids (C-7, C-9, C-11, and C-13), resulting in relatively simple distributions. The even carbon-numbered wax esters show a far more complex distribution due to a number of factors: (i) Their n-alcohol moieties are not dominated by even carbon-numbered n-alcohols esterified with odd carbon-numbered 2-methyl fatty acids, but odd and even carbon-numbered n-alcohols participate in approximately equal amounts; (ii) odd carbon-numbered methyl-branched alcohols participate abundantly in these wax ester clusters; and (iii) with increasing molecular weight, various isomers of the 2,6-, 2,8-, and 2,10-dimethyl branched fatty acids also participate in the even carbon-numbered wax esters. The data demonstrate that there is a clear biosynthetic control on the wax ester composition although the reasons for the complex chemistry of the waxes are not yet understood

    Early anthropogenic transformation of the Danube-Black Sea system

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 2 (2012): 582, doi:10.1038/srep00582.Over the last century humans have altered the export of fluvial materials leading to significant changes in morphology, chemistry, and biology of the coastal ocean. Here we present sedimentary, paleoenvironmental and paleogenetic evidence to show that the Black Sea, a nearly enclosed marine basin, was affected by land use long before the changes of the Industrial Era. Although watershed hydroclimate was spatially and temporally variable over the last ~3000 years, surface salinity dropped systematically in the Black Sea. Sediment loads delivered by Danube River, the main tributary of the Black Sea, significantly increased as land use intensified in the last two millennia, which led to a rapid expansion of its delta. Lastly, proliferation of diatoms and dinoflagellates over the last five to six centuries, when intensive deforestation occurred in Eastern Europe, points to an anthropogenic pulse of river-borne nutrients that radically transformed the food web structure in the Black Sea.This study was supported by grants OISE 0637108, EAR 0952146, OCE 0602423 and OCE 0825020 from the National Science Foundation and grants from the Woods Hole Oceanographic Institution

    Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    No full text
    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.© Author(s) 2012

    2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei

    Get PDF
    2,6,10,15,19-Pentamethylicosenes (PMEs) containing three to five double bonds have been found in the methanogenic archaea Methanosarcina mazei (DSM 3338), a strain isolated from sewage sludge, and in Methanolobus bombayensis (OCM 438), a non-extremophilic archaeon isolated from a marine sediment. This finding gives additional support for the use of compounds with the PME carbon skeleton as markers for methanogenic activity in marine environments. (C) 1997 Elsevier Science Ltd

    Novel polyunsaturated n-alkenes in the marine diatom Rhizosolenia setigera

    No full text
    Four previously unknown n-C-25 and n-C-27 heptaenes of the marine diatom Rhizosolenia setigera were isolated and identified using NMR spectroscopy. They possess six methylene interrupted (Z)-double bonds starting at C-3 and an additional terminal or n-2 Q-double bond. Structural and stable carbon isotopic evidence suggests that these polyenes are biosynthesized by chain elongation of the C22:6n-3 fatty acid, followed by decarboxylation and introduction of double bonds at specific positions.</p

    Structural Identification of the Diester Preen-Gland Waxes of the Red Knot (Calidris canutus)

    Get PDF
    The intact C32-C48 diester wax esters of the preen gland of the migrating bird Calidris canutus are shown, using synthesized standards, to comprise predominantly C12-C16 alkane-1,2-diols esterified with octanoic, decanoic, and dodecanoic acid at one position, and with predominantly even-numbered carbon fatty acids at the other position.
    corecore